airflow-dag-patterns
Build production Apache Airflow DAGs with best practices for operators, sensors, testing, and deployment. Use when creating data pipelines, orchestrating workflows, or scheduling batch jobs.
When & Why to Use This Skill
This Claude skill provides production-ready Apache Airflow DAG patterns and industry best practices for building robust data pipelines. It empowers developers to design scalable workflow orchestrations using the TaskFlow API, dynamic DAG generation, and advanced error-handling strategies, ensuring idempotent and observable data processing.
Use Cases
- Data Pipeline Orchestration: Designing complex ETL/ELT workflows with clear task dependencies, atomicity, and idempotent execution logic.
- Dynamic Workflow Scaling: Implementing DAG factories to automatically generate multiple pipelines from configuration files, ideal for multi-tenant data environments.
- Event-Driven Automation: Utilizing S3KeySensors, FileSensors, and ExternalTaskSensors to trigger workflows based on data availability or upstream task completion.
- Production Error Resilience: Setting up comprehensive alerting, custom failure callbacks, and retry exponential backoff policies to maintain high system availability.
- Automated Testing & QA: Applying unit testing patterns for DAG integrity and task logic to ensure deployment stability in CI/CD environments.
| name | airflow-dag-patterns |
|---|---|
| description | Build production Apache Airflow DAGs with best practices for operators, sensors, testing, and deployment. Use when creating data pipelines, orchestrating workflows, or scheduling batch jobs. |
Apache Airflow DAG Patterns
Production-ready patterns for Apache Airflow including DAG design, operators, sensors, testing, and deployment strategies.
When to Use This Skill
- Creating data pipeline orchestration with Airflow
- Designing DAG structures and dependencies
- Implementing custom operators and sensors
- Testing Airflow DAGs locally
- Setting up Airflow in production
- Debugging failed DAG runs
Core Concepts
1. DAG Design Principles
| Principle | Description |
|---|---|
| Idempotent | Running twice produces same result |
| Atomic | Tasks succeed or fail completely |
| Incremental | Process only new/changed data |
| Observable | Logs, metrics, alerts at every step |
2. Task Dependencies
# Linear
task1 >> task2 >> task3
# Fan-out
task1 >> [task2, task3, task4]
# Fan-in
[task1, task2, task3] >> task4
# Complex
task1 >> task2 >> task4
task1 >> task3 >> task4
Quick Start
# dags/example_dag.py
from datetime import datetime, timedelta
from airflow import DAG
from airflow.operators.python import PythonOperator
from airflow.operators.empty import EmptyOperator
default_args = {
'owner': 'data-team',
'depends_on_past': False,
'email_on_failure': True,
'email_on_retry': False,
'retries': 3,
'retry_delay': timedelta(minutes=5),
'retry_exponential_backoff': True,
'max_retry_delay': timedelta(hours=1),
}
with DAG(
dag_id='example_etl',
default_args=default_args,
description='Example ETL pipeline',
schedule='0 6 * * *', # Daily at 6 AM
start_date=datetime(2024, 1, 1),
catchup=False,
tags=['etl', 'example'],
max_active_runs=1,
) as dag:
start = EmptyOperator(task_id='start')
def extract_data(**context):
execution_date = context['ds']
# Extract logic here
return {'records': 1000}
extract = PythonOperator(
task_id='extract',
python_callable=extract_data,
)
end = EmptyOperator(task_id='end')
start >> extract >> end
Patterns
Pattern 1: TaskFlow API (Airflow 2.0+)
# dags/taskflow_example.py
from datetime import datetime
from airflow.decorators import dag, task
from airflow.models import Variable
@dag(
dag_id='taskflow_etl',
schedule='@daily',
start_date=datetime(2024, 1, 1),
catchup=False,
tags=['etl', 'taskflow'],
)
def taskflow_etl():
"""ETL pipeline using TaskFlow API"""
@task()
def extract(source: str) -> dict:
"""Extract data from source"""
import pandas as pd
df = pd.read_csv(f's3://bucket/{source}/{{ ds }}.csv')
return {'data': df.to_dict(), 'rows': len(df)}
@task()
def transform(extracted: dict) -> dict:
"""Transform extracted data"""
import pandas as pd
df = pd.DataFrame(extracted['data'])
df['processed_at'] = datetime.now()
df = df.dropna()
return {'data': df.to_dict(), 'rows': len(df)}
@task()
def load(transformed: dict, target: str):
"""Load data to target"""
import pandas as pd
df = pd.DataFrame(transformed['data'])
df.to_parquet(f's3://bucket/{target}/{{ ds }}.parquet')
return transformed['rows']
@task()
def notify(rows_loaded: int):
"""Send notification"""
print(f'Loaded {rows_loaded} rows')
# Define dependencies with XCom passing
extracted = extract(source='raw_data')
transformed = transform(extracted)
loaded = load(transformed, target='processed_data')
notify(loaded)
# Instantiate the DAG
taskflow_etl()
Pattern 2: Dynamic DAG Generation
# dags/dynamic_dag_factory.py
from datetime import datetime, timedelta
from airflow import DAG
from airflow.operators.python import PythonOperator
from airflow.models import Variable
import json
# Configuration for multiple similar pipelines
PIPELINE_CONFIGS = [
{'name': 'customers', 'schedule': '@daily', 'source': 's3://raw/customers'},
{'name': 'orders', 'schedule': '@hourly', 'source': 's3://raw/orders'},
{'name': 'products', 'schedule': '@weekly', 'source': 's3://raw/products'},
]
def create_dag(config: dict) -> DAG:
"""Factory function to create DAGs from config"""
dag_id = f"etl_{config['name']}"
default_args = {
'owner': 'data-team',
'retries': 3,
'retry_delay': timedelta(minutes=5),
}
dag = DAG(
dag_id=dag_id,
default_args=default_args,
schedule=config['schedule'],
start_date=datetime(2024, 1, 1),
catchup=False,
tags=['etl', 'dynamic', config['name']],
)
with dag:
def extract_fn(source, **context):
print(f"Extracting from {source} for {context['ds']}")
def transform_fn(**context):
print(f"Transforming data for {context['ds']}")
def load_fn(table_name, **context):
print(f"Loading to {table_name} for {context['ds']}")
extract = PythonOperator(
task_id='extract',
python_callable=extract_fn,
op_kwargs={'source': config['source']},
)
transform = PythonOperator(
task_id='transform',
python_callable=transform_fn,
)
load = PythonOperator(
task_id='load',
python_callable=load_fn,
op_kwargs={'table_name': config['name']},
)
extract >> transform >> load
return dag
# Generate DAGs
for config in PIPELINE_CONFIGS:
globals()[f"dag_{config['name']}"] = create_dag(config)
Pattern 3: Branching and Conditional Logic
# dags/branching_example.py
from airflow.decorators import dag, task
from airflow.operators.python import BranchPythonOperator
from airflow.operators.empty import EmptyOperator
from airflow.utils.trigger_rule import TriggerRule
@dag(
dag_id='branching_pipeline',
schedule='@daily',
start_date=datetime(2024, 1, 1),
catchup=False,
)
def branching_pipeline():
@task()
def check_data_quality() -> dict:
"""Check data quality and return metrics"""
quality_score = 0.95 # Simulated
return {'score': quality_score, 'rows': 10000}
def choose_branch(**context) -> str:
"""Determine which branch to execute"""
ti = context['ti']
metrics = ti.xcom_pull(task_ids='check_data_quality')
if metrics['score'] >= 0.9:
return 'high_quality_path'
elif metrics['score'] >= 0.7:
return 'medium_quality_path'
else:
return 'low_quality_path'
quality_check = check_data_quality()
branch = BranchPythonOperator(
task_id='branch',
python_callable=choose_branch,
)
high_quality = EmptyOperator(task_id='high_quality_path')
medium_quality = EmptyOperator(task_id='medium_quality_path')
low_quality = EmptyOperator(task_id='low_quality_path')
# Join point - runs after any branch completes
join = EmptyOperator(
task_id='join',
trigger_rule=TriggerRule.NONE_FAILED_MIN_ONE_SUCCESS,
)
quality_check >> branch >> [high_quality, medium_quality, low_quality] >> join
branching_pipeline()
Pattern 4: Sensors and External Dependencies
# dags/sensor_patterns.py
from datetime import datetime, timedelta
from airflow import DAG
from airflow.sensors.filesystem import FileSensor
from airflow.providers.amazon.aws.sensors.s3 import S3KeySensor
from airflow.sensors.external_task import ExternalTaskSensor
from airflow.operators.python import PythonOperator
with DAG(
dag_id='sensor_example',
schedule='@daily',
start_date=datetime(2024, 1, 1),
catchup=False,
) as dag:
# Wait for file on S3
wait_for_file = S3KeySensor(
task_id='wait_for_s3_file',
bucket_name='data-lake',
bucket_key='raw/{{ ds }}/data.parquet',
aws_conn_id='aws_default',
timeout=60 * 60 * 2, # 2 hours
poke_interval=60 * 5, # Check every 5 minutes
mode='reschedule', # Free up worker slot while waiting
)
# Wait for another DAG to complete
wait_for_upstream = ExternalTaskSensor(
task_id='wait_for_upstream_dag',
external_dag_id='upstream_etl',
external_task_id='final_task',
execution_date_fn=lambda dt: dt, # Same execution date
timeout=60 * 60 * 3,
mode='reschedule',
)
# Custom sensor using @task.sensor decorator
@task.sensor(poke_interval=60, timeout=3600, mode='reschedule')
def wait_for_api() -> PokeReturnValue:
"""Custom sensor for API availability"""
import requests
response = requests.get('https://api.example.com/health')
is_done = response.status_code == 200
return PokeReturnValue(is_done=is_done, xcom_value=response.json())
api_ready = wait_for_api()
def process_data(**context):
api_result = context['ti'].xcom_pull(task_ids='wait_for_api')
print(f"API returned: {api_result}")
process = PythonOperator(
task_id='process',
python_callable=process_data,
)
[wait_for_file, wait_for_upstream, api_ready] >> process
Pattern 5: Error Handling and Alerts
# dags/error_handling.py
from datetime import datetime, timedelta
from airflow import DAG
from airflow.operators.python import PythonOperator
from airflow.utils.trigger_rule import TriggerRule
from airflow.models import Variable
def task_failure_callback(context):
"""Callback on task failure"""
task_instance = context['task_instance']
exception = context.get('exception')
# Send to Slack/PagerDuty/etc
message = f"""
Task Failed!
DAG: {task_instance.dag_id}
Task: {task_instance.task_id}
Execution Date: {context['ds']}
Error: {exception}
Log URL: {task_instance.log_url}
"""
# send_slack_alert(message)
print(message)
def dag_failure_callback(context):
"""Callback on DAG failure"""
# Aggregate failures, send summary
pass
with DAG(
dag_id='error_handling_example',
schedule='@daily',
start_date=datetime(2024, 1, 1),
catchup=False,
on_failure_callback=dag_failure_callback,
default_args={
'on_failure_callback': task_failure_callback,
'retries': 3,
'retry_delay': timedelta(minutes=5),
},
) as dag:
def might_fail(**context):
import random
if random.random() < 0.3:
raise ValueError("Random failure!")
return "Success"
risky_task = PythonOperator(
task_id='risky_task',
python_callable=might_fail,
)
def cleanup(**context):
"""Cleanup runs regardless of upstream failures"""
print("Cleaning up...")
cleanup_task = PythonOperator(
task_id='cleanup',
python_callable=cleanup,
trigger_rule=TriggerRule.ALL_DONE, # Run even if upstream fails
)
def notify_success(**context):
"""Only runs if all upstream succeeded"""
print("All tasks succeeded!")
success_notification = PythonOperator(
task_id='notify_success',
python_callable=notify_success,
trigger_rule=TriggerRule.ALL_SUCCESS,
)
risky_task >> [cleanup_task, success_notification]
Pattern 6: Testing DAGs
# tests/test_dags.py
import pytest
from datetime import datetime
from airflow.models import DagBag
@pytest.fixture
def dagbag():
return DagBag(dag_folder='dags/', include_examples=False)
def test_dag_loaded(dagbag):
"""Test that all DAGs load without errors"""
assert len(dagbag.import_errors) == 0, f"DAG import errors: {dagbag.import_errors}"
def test_dag_structure(dagbag):
"""Test specific DAG structure"""
dag = dagbag.get_dag('example_etl')
assert dag is not None
assert len(dag.tasks) == 3
assert dag.schedule_interval == '0 6 * * *'
def test_task_dependencies(dagbag):
"""Test task dependencies are correct"""
dag = dagbag.get_dag('example_etl')
extract_task = dag.get_task('extract')
assert 'start' in [t.task_id for t in extract_task.upstream_list]
assert 'end' in [t.task_id for t in extract_task.downstream_list]
def test_dag_integrity(dagbag):
"""Test DAG has no cycles and is valid"""
for dag_id, dag in dagbag.dags.items():
assert dag.test_cycle() is None, f"Cycle detected in {dag_id}"
# Test individual task logic
def test_extract_function():
"""Unit test for extract function"""
from dags.example_dag import extract_data
result = extract_data(ds='2024-01-01')
assert 'records' in result
assert isinstance(result['records'], int)
Project Structure
airflow/
├── dags/
│ ├── __init__.py
│ ├── common/
│ │ ├── __init__.py
│ │ ├── operators.py # Custom operators
│ │ ├── sensors.py # Custom sensors
│ │ └── callbacks.py # Alert callbacks
│ ├── etl/
│ │ ├── customers.py
│ │ └── orders.py
│ └── ml/
│ └── training.py
├── plugins/
│ └── custom_plugin.py
├── tests/
│ ├── __init__.py
│ ├── test_dags.py
│ └── test_operators.py
├── docker-compose.yml
└── requirements.txt
Best Practices
Do's
- Use TaskFlow API - Cleaner code, automatic XCom
- Set timeouts - Prevent zombie tasks
- Use
mode='reschedule'- For sensors, free up workers - Test DAGs - Unit tests and integration tests
- Idempotent tasks - Safe to retry
Don'ts
- Don't use
depends_on_past=True- Creates bottlenecks - Don't hardcode dates - Use
{{ ds }}macros - Don't use global state - Tasks should be stateless
- Don't skip catchup blindly - Understand implications
- Don't put heavy logic in DAG file - Import from modules