Building Mcp Server On Cloudflare

cloudflare's avatarfrom cloudflare
0stars🔀0forks📁View on GitHub

When & Why to Use This Skill

This Claude skill empowers developers to build, secure, and deploy production-ready Model Context Protocol (MCP) servers on Cloudflare Workers. It streamlines the entire lifecycle of MCP development—from generating server code and defining custom tools with Zod validation to configuring OAuth authentication and executing global deployments via the Cloudflare ecosystem.

Use Cases

  • Case 1: Creating custom MCP tools that allow Claude Desktop to interact with private internal APIs or legacy databases securely.
  • Case 2: Deploying serverless, low-latency MCP endpoints on Cloudflare Workers to provide AI agents with real-time data processing capabilities.
  • Case 3: Implementing robust OAuth2 authentication (GitHub, Google, etc.) for remote MCP servers to ensure only authorized users can access specific agent tools.
  • Case 4: Rapidly prototyping and testing new Model Context Protocol schemas using the MCP Inspector and Wrangler CLI before production rollout.
namebuilding-mcp-server-on-cloudflare
description|
Use whenuser wants to "build MCP server", "create MCP tools", "remote

Building MCP Servers on Cloudflare

Creates production-ready Model Context Protocol servers on Cloudflare Workers with tools, authentication, and deployment.

When to Use

  • User wants to build a remote MCP server
  • User needs to expose tools via MCP
  • User asks about MCP authentication or OAuth
  • User wants to deploy MCP to Cloudflare Workers

Prerequisites

  • Cloudflare account with Workers enabled
  • Node.js 18+ and npm/pnpm/yarn
  • Wrangler CLI (npm install -g wrangler)

Quick Start

Option 1: Public Server (No Auth)

npm create cloudflare@latest -- my-mcp-server \
  --template=cloudflare/ai/demos/remote-mcp-authless
cd my-mcp-server
npm start

Server runs at http://localhost:8788/mcp

Option 2: Authenticated Server (OAuth)

npm create cloudflare@latest -- my-mcp-server \
  --template=cloudflare/ai/demos/remote-mcp-github-oauth
cd my-mcp-server

Requires OAuth app setup. See references/oauth-setup.md.

Core Workflow

Step 1: Define Tools

Tools are functions MCP clients can call. Define them using server.tool():

import { McpAgent } from "agents/mcp";
import { z } from "zod";

export class MyMCP extends McpAgent {
  server = new Server({ name: "my-mcp", version: "1.0.0" });

  async init() {
    // Simple tool with parameters
    this.server.tool(
      "add",
      { a: z.number(), b: z.number() },
      async ({ a, b }) => ({
        content: [{ type: "text", text: String(a + b) }],
      })
    );

    // Tool that calls external API
    this.server.tool(
      "get_weather",
      { city: z.string() },
      async ({ city }) => {
        const response = await fetch(`https://api.weather.com/${city}`);
        const data = await response.json();
        return {
          content: [{ type: "text", text: JSON.stringify(data) }],
        };
      }
    );
  }
}

Step 2: Configure Entry Point

Public server (src/index.ts):

import { MyMCP } from "./mcp";

export default {
  fetch(request: Request, env: Env, ctx: ExecutionContext) {
    const url = new URL(request.url);
    if (url.pathname === "/mcp") {
      return MyMCP.serveSSE("/mcp").fetch(request, env, ctx);
    }
    return new Response("MCP Server", { status: 200 });
  },
};

export { MyMCP };

Authenticated server — See references/oauth-setup.md.

Step 3: Test Locally

# Start server
npm start

# In another terminal, test with MCP Inspector
npx @modelcontextprotocol/inspector@latest
# Open http://localhost:5173, enter http://localhost:8788/mcp

Step 4: Deploy

npx wrangler deploy

Server accessible at https://[worker-name].[account].workers.dev/mcp

Step 5: Connect Clients

Claude Desktop (claude_desktop_config.json):

{
  "mcpServers": {
    "my-server": {
      "command": "npx",
      "args": ["mcp-remote", "https://my-mcp.workers.dev/mcp"]
    }
  }
}

Restart Claude Desktop after updating config.

Tool Patterns

Return Types

// Text response
return { content: [{ type: "text", text: "result" }] };

// Multiple content items
return {
  content: [
    { type: "text", text: "Here's the data:" },
    { type: "text", text: JSON.stringify(data, null, 2) },
  ],
};

Input Validation with Zod

this.server.tool(
  "create_user",
  {
    email: z.string().email(),
    name: z.string().min(1).max(100),
    role: z.enum(["admin", "user", "guest"]),
    age: z.number().int().min(0).optional(),
  },
  async (params) => {
    // params are fully typed and validated
  }
);

Accessing Environment/Bindings

export class MyMCP extends McpAgent<Env> {
  async init() {
    this.server.tool("query_db", { sql: z.string() }, async ({ sql }) => {
      // Access D1 binding
      const result = await this.env.DB.prepare(sql).all();
      return { content: [{ type: "text", text: JSON.stringify(result) }] };
    });
  }
}

Authentication

For OAuth-protected servers, see references/oauth-setup.md.

Supported providers:

  • GitHub
  • Google
  • Auth0
  • Stytch
  • WorkOS
  • Any OAuth 2.0 compliant provider

Wrangler Configuration

Minimal wrangler.toml:

name = "my-mcp-server"
main = "src/index.ts"
compatibility_date = "2024-12-01"

[durable_objects]
bindings = [{ name = "MCP", class_name = "MyMCP" }]

[[migrations]]
tag = "v1"
new_classes = ["MyMCP"]

With bindings (D1, KV, etc.):

[[d1_databases]]
binding = "DB"
database_name = "my-db"
database_id = "xxx"

[[kv_namespaces]]
binding = "KV"
id = "xxx"

Common Issues

"Tool not found" in Client

  1. Verify tool name matches exactly (case-sensitive)
  2. Ensure init() registers tools before connections
  3. Check server logs: wrangler tail

Connection Fails

  1. Confirm endpoint path is /mcp
  2. Check CORS if browser-based client
  3. Verify Worker is deployed: wrangler deployments list

OAuth Redirect Errors

  1. Callback URL must match OAuth app config exactly
  2. Check GITHUB_CLIENT_ID and GITHUB_CLIENT_SECRET are set
  3. For local dev, use http://localhost:8788/callback

References

Building Mcp Server On Cloudflare – AI Agent Skills | Claude Skills