data-quality-auditor

majiayu000's avatarfrom majiayu000

Assess data quality with checks for missing values, duplicates, type issues, and inconsistencies. Use for data validation, ETL pipelines, or dataset documentation.

5stars🔀1forks📁View on GitHub🕐Updated Jan 11, 2026

When & Why to Use This Skill

The Data Quality Auditor is a comprehensive Claude skill designed to automate data validation and quality assessment for CSV and Excel datasets. It streamlines the data auditing process by identifying missing values, duplicates, and type inconsistencies, providing a standardized quality score and detailed reports to ensure data integrity in ETL pipelines and dataset documentation.

Use Cases

  • Pre-Import Validation: Automatically verify the integrity of external datasets before loading them into production databases to prevent data corruption and downstream errors.
  • ETL Pipeline Quality Gates: Integrate programmatic quality checks into data engineering workflows to trigger alerts or stop processes when data quality falls below a specific threshold.
  • Data Auditing and Compliance: Generate professional HTML or JSON reports that document dataset health, completeness, and consistency for compliance and stakeholder review.
  • Data Cleaning Preparation: Quickly identify specific rows and columns with issues like duplicate entries or malformed formats to prioritize manual or automated cleaning efforts.
namedata-quality-auditor
descriptionAssess data quality with checks for missing values, duplicates, type issues, and inconsistencies. Use for data validation, ETL pipelines, or dataset documentation.

Data Quality Auditor

Comprehensive data quality assessment for CSV/Excel datasets.

Features

  • Completeness: Missing values analysis
  • Uniqueness: Duplicate detection
  • Validity: Type validation and constraints
  • Consistency: Pattern and format checks
  • Quality Score: Overall data quality metric
  • Reports: Detailed HTML/JSON reports

Quick Start

from data_quality_auditor import DataQualityAuditor

auditor = DataQualityAuditor()
auditor.load_csv("customers.csv")

# Run full audit
report = auditor.audit()
print(f"Quality Score: {report['quality_score']}/100")

# Check specific issues
missing = auditor.check_missing()
duplicates = auditor.check_duplicates()

CLI Usage

# Full audit
python data_quality_auditor.py --input data.csv

# Generate HTML report
python data_quality_auditor.py --input data.csv --report report.html

# Check specific aspects
python data_quality_auditor.py --input data.csv --missing
python data_quality_auditor.py --input data.csv --duplicates
python data_quality_auditor.py --input data.csv --types

# JSON output
python data_quality_auditor.py --input data.csv --json

# Validate against rules
python data_quality_auditor.py --input data.csv --rules rules.json

API Reference

DataQualityAuditor Class

class DataQualityAuditor:
    def __init__(self)

    # Data loading
    def load_csv(self, filepath: str, **kwargs) -> 'DataQualityAuditor'
    def load_dataframe(self, df: pd.DataFrame) -> 'DataQualityAuditor'

    # Full audit
    def audit(self) -> dict
    def quality_score(self) -> float

    # Individual checks
    def check_missing(self) -> dict
    def check_duplicates(self, subset: list = None) -> dict
    def check_types(self) -> dict
    def check_uniqueness(self) -> dict
    def check_patterns(self, column: str, pattern: str) -> dict

    # Validation
    def validate_column(self, column: str, rules: dict) -> dict
    def validate_dataset(self, rules: dict) -> dict

    # Reports
    def generate_report(self, output: str, format: str = "html") -> str
    def summary(self) -> str

Quality Checks

Missing Values

missing = auditor.check_missing()
# Returns:
{
    "total_cells": 10000,
    "missing_cells": 150,
    "missing_percent": 1.5,
    "by_column": {
        "email": {"count": 50, "percent": 5.0},
        "phone": {"count": 100, "percent": 10.0}
    },
    "rows_with_missing": 120
}

Duplicates

dups = auditor.check_duplicates()
# Returns:
{
    "total_rows": 1000,
    "duplicate_rows": 25,
    "duplicate_percent": 2.5,
    "duplicate_groups": [...],
    "by_columns": {
        "email": {"duplicates": 15},
        "phone": {"duplicates": 20}
    }
}

Type Validation

types = auditor.check_types()
# Returns:
{
    "columns": {
        "age": {
            "detected_type": "int64",
            "unique_values": 75,
            "sample_values": [25, 30, 45],
            "issues": []
        },
        "date": {
            "detected_type": "object",
            "unique_values": 365,
            "sample_values": ["2023-01-01", "invalid"],
            "issues": ["Mixed date formats detected"]
        }
    }
}

Validation Rules

Define custom validation rules:

{
    "columns": {
        "email": {
            "required": true,
            "unique": true,
            "pattern": "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$"
        },
        "age": {
            "type": "integer",
            "min": 0,
            "max": 120
        },
        "status": {
            "allowed_values": ["active", "inactive", "pending"]
        },
        "created_at": {
            "type": "date",
            "format": "%Y-%m-%d"
        }
    }
}
results = auditor.validate_dataset(rules)

Quality Score

The quality score (0-100) is calculated from:

  • Completeness (30%): Missing value ratio
  • Uniqueness (25%): Duplicate row ratio
  • Validity (25%): Type and constraint compliance
  • Consistency (20%): Format and pattern adherence
score = auditor.quality_score()
# 85.5

Output Formats

Audit Report

{
    "file": "data.csv",
    "rows": 1000,
    "columns": 15,
    "quality_score": 85.5,
    "completeness": {
        "score": 92.0,
        "missing_cells": 800,
        "details": {...}
    },
    "uniqueness": {
        "score": 97.5,
        "duplicate_rows": 25,
        "details": {...}
    },
    "validity": {
        "score": 78.0,
        "type_issues": [...],
        "details": {...}
    },
    "consistency": {
        "score": 80.0,
        "pattern_issues": [...],
        "details": {...}
    },
    "recommendations": [
        "Column 'phone' has 10% missing values",
        "25 duplicate rows detected",
        "Column 'date' has inconsistent formats"
    ]
}

Example Workflows

Pre-Import Validation

auditor = DataQualityAuditor()
auditor.load_csv("import_data.csv")

report = auditor.audit()
if report['quality_score'] < 80:
    print("Data quality below threshold!")
    for rec in report['recommendations']:
        print(f"  - {rec}")
    exit(1)

ETL Pipeline Check

auditor = DataQualityAuditor()
auditor.load_dataframe(transformed_df)

# Check critical columns
email_check = auditor.validate_column("email", {
    "required": True,
    "unique": True,
    "pattern": r"^[\w.+-]+@[\w-]+\.[\w.-]+$"
})

if email_check['issues']:
    raise ValueError(f"Email validation failed: {email_check['issues']}")

Generate Documentation

auditor = DataQualityAuditor()
auditor.load_csv("dataset.csv")

# Generate comprehensive report
auditor.generate_report("quality_report.html", format="html")

# Or get summary text
print(auditor.summary())

Dependencies

  • pandas>=2.0.0
  • numpy>=1.24.0