docling
Convert documents (PPTX, PDF, DOCX, XLSX, images) to Markdown/JSON/HTML using IBM Docling. This skill should be used when user asks to convert, parse, or extract content from documents. Triggers on "convert pptx", "parse pdf", "extract from document", "конвертуй презентацію", "витягни з pdf".
When & Why to Use This Skill
Docling is a high-performance document conversion skill powered by IBM Docling, designed to transform complex files like PDFs, PPTX, and images into structured Markdown, JSON, or HTML. It excels at AI-driven layout analysis, precise table extraction, and multi-engine OCR, making it a critical tool for building RAG (Retrieval-Augmented Generation) pipelines and automating document-to-data workflows.
Use Cases
- RAG Pipeline Preparation: Convert large volumes of PDFs and office documents into clean, structured Markdown to significantly improve LLM retrieval and context accuracy.
- Automated Data Extraction: Parse complex tables and hierarchical structures from financial reports or technical manuals into JSON for database integration.
- Legacy Content Migration: Batch convert legacy presentations (PPTX) and Word documents into web-friendly formats like HTML or Markdown for documentation sites.
- Advanced OCR & Digitization: Extract searchable text and layout information from scanned documents or images using multiple OCR engines (Tesseract, EasyOCR, etc.).
- AI-Enriched Processing: Use Vision Language Models (VLM) to generate descriptions for images and formulas within documents during the conversion process.
| name | docling |
|---|---|
| description | Convert documents (PPTX, PDF, DOCX, XLSX, images) to Markdown/JSON/HTML using IBM Docling. This skill should be used when user asks to convert, parse, or extract content from documents. Triggers on "convert pptx", "parse pdf", "extract from document", "конвертуй презентацію", "витягни з pdf". |
Docling - Document Conversion Skill
Convert any document format to structured Markdown, JSON, or HTML using IBM Docling with AI-powered layout analysis.
Quick Start
Batch convert directory to Markdown:
uv run python .claude/skills/docling/scripts/convert_docs.py \
--input /path/to/documents \
--output /path/to/output \
--format md
Single file via CLI:
uv run docling document.pptx --to md --output ./output
Primary Use Case: Batch Conversion
The main script scripts/convert_docs.py handles:
- Recursive directory scanning
- Clean filename generation (slugified, numbered)
- Index file creation with table of contents
- Progress tracking
Example - Convert presentation course:
uv run python .claude/skills/docling/scripts/convert_docs.py \
--input .artifacts/presentations \
--output docs/course \
--format md \
--prefix "lesson"
Supported Formats
Input Formats
| Format | Extension | Notes |
|---|---|---|
| PowerPoint | .pptx |
Slides extracted with structure |
.pdf |
Layout analysis, OCR support | |
| Word | .docx |
Full formatting preserved |
| Excel | .xlsx |
Tables converted |
| HTML | .html |
Structure preserved |
| Images | .png, .jpg, .tiff |
OCR extraction |
| Audio | .wav, .mp3 |
ASR transcription |
| Markdown | .md |
Pass-through with parsing |
| CSV | .csv |
Table structure |
Output Formats
| Format | Flag | Use Case |
|---|---|---|
| Markdown | --to md |
Documentation, RAG |
| JSON | --to json |
Structured data, API |
| HTML | --to html |
Web publishing |
| Text | --to text |
Plain text extraction |
| DocTags | --to doctags |
Docling internal format |
CLI Reference
Basic Usage
# Single file
uv run docling document.pdf --to md
# Multiple files
uv run docling file1.pdf file2.docx --to md
# Directory
uv run docling ./documents/ --to md --output ./output/
# URL
uv run docling https://example.com/doc.pdf --to md
OCR Options
# Enable OCR (default: auto)
uv run docling scanned.pdf --ocr --ocr-engine tesseract
# Force OCR on all content
uv run docling document.pdf --force-ocr
# Specify language
uv run docling document.pdf --ocr-lang ukr,eng
OCR Engines: auto, easyocr, tesseract, tesserocr, rapidocr, ocrmac (macOS)
Table Extraction
# Accurate mode (slower, better quality)
uv run docling document.pdf --table-mode accurate
# Fast mode
uv run docling document.pdf --table-mode fast
# Disable tables
uv run docling document.pdf --no-tables
Image Handling
# Embed images as base64
uv run docling document.pdf --image-export-mode embedded
# Save images as separate files
uv run docling document.pdf --image-export-mode referenced
# Placeholder only (no images)
uv run docling document.pdf --image-export-mode placeholder
AI Enrichment
# Enable code block detection
uv run docling document.pdf --enrich-code
# Enable formula recognition
uv run docling document.pdf --enrich-formula
# Enable picture classification
uv run docling document.pdf --enrich-picture-classification
# Enable picture description (VLM)
uv run docling document.pdf --enrich-picture-description
VLM Pipeline (Vision Language Model)
# Use VLM for complex documents
uv run docling document.pdf --pipeline vlm --vlm-model granite_docling
# Available models: granite_docling, smoldocling, got_ocr_2, granite_vision
ASR Pipeline (Audio Transcription)
# Transcribe audio
uv run docling audio.mp3 --pipeline asr --asr-model whisper_small
# Models: whisper_tiny, whisper_small, whisper_medium, whisper_large, whisper_turbo
Performance Options
# Multi-threading
uv run docling document.pdf --num-threads 8
# GPU acceleration
uv run docling document.pdf --device cuda # or mps for Apple Silicon
# Timeout per document
uv run docling document.pdf --document-timeout 300
Python API
Basic Conversion
from docling.document_converter import DocumentConverter
converter = DocumentConverter()
result = converter.convert("document.pptx")
# Export to Markdown
markdown = result.document.export_to_markdown()
# Export to JSON
json_data = result.document.export_to_dict()
# Save directly
result.document.save_as_markdown("output.md")
Batch Conversion
from pathlib import Path
from docling.document_converter import DocumentConverter
converter = DocumentConverter()
sources = list(Path("./documents").glob("*.pdf"))
for result in converter.convert_all(sources):
if result.status.name == "SUCCESS":
output = Path("./output") / f"{result.input.file.stem}.md"
result.document.save_as_markdown(output)
With Pipeline Options
from docling.document_converter import DocumentConverter, FormatOption
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions
pdf_options = PdfPipelineOptions(
do_ocr=True,
do_table_structure=True,
table_structure_options={"mode": "accurate"},
)
converter = DocumentConverter(
format_options={
InputFormat.PDF: FormatOption(pipeline_options=pdf_options)
}
)
Chunking for RAG
from docling.document_converter import DocumentConverter
from docling.chunking import HybridChunker
converter = DocumentConverter()
result = converter.convert("document.pdf")
chunker = HybridChunker()
chunks = list(chunker.chunk(result.document))
for chunk in chunks:
print(f"Chunk: {chunk.text[:100]}...")
Troubleshooting
| Problem | Solution |
|---|---|
| No text extracted | Enable OCR: --ocr or --force-ocr |
| Tables not formatted | Use --table-mode accurate |
| Slow processing | Use --table-mode fast, reduce --num-threads |
| Memory errors | Reduce --page-batch-size, process files individually |
Debug Options
uv run docling document.pdf -v # info logging
uv run docling document.pdf -vv # debug logging
uv run docling document.pdf --debug-visualize-layout # see layout detection
Resources
scripts/
convert_docs.py- Batch conversion with clean filenames and index generation