embedding-strategies

wshobson's avatarfrom wshobson

Select and optimize embedding models for semantic search and RAG applications. Use when choosing embedding models, implementing chunking strategies, or optimizing embedding quality for specific domains.

24.2kstars🔀2.7kforks📁View on GitHub🕐Updated Jan 1, 2026

When & Why to Use This Skill

This Claude skill provides a comprehensive framework for selecting and optimizing embedding models to enhance semantic search and Retrieval-Augmented Generation (RAG) applications. It offers expert guidance on choosing the right models (such as Voyage AI, OpenAI, or BGE), implementing advanced chunking strategies, and fine-tuning embedding quality for specialized domains like coding, finance, and legal documentation to ensure high-precision data retrieval.

Use Cases

  • 1. RAG Pipeline Optimization: Selecting the most effective embedding models and chunking parameters to improve the accuracy and relevance of context provided to LLMs.
  • 2. Domain-Specific Search Systems: Implementing specialized models like voyage-code-3 or voyage-finance-2 to handle technical jargon and complex document structures in niche industries.
  • 3. Intelligent Data Chunking: Applying recursive character splitting, semantic sectioning, or token-based chunking to maintain context integrity while staying within model constraints.
  • 4. Retrieval Quality Benchmarking: Using evaluation metrics such as MRR, NDCG, and Precision@K to compare different embedding strategies and ensure optimal system performance.
nameembedding-strategies
descriptionSelect and optimize embedding models for semantic search and RAG applications. Use when choosing embedding models, implementing chunking strategies, or optimizing embedding quality for specific domains.

Embedding Strategies

Guide to selecting and optimizing embedding models for vector search applications.

When to Use This Skill

  • Choosing embedding models for RAG
  • Optimizing chunking strategies
  • Fine-tuning embeddings for domains
  • Comparing embedding model performance
  • Reducing embedding dimensions
  • Handling multilingual content

Core Concepts

1. Embedding Model Comparison (2026)

Model Dimensions Max Tokens Best For
voyage-3-large 1024 32000 Claude apps (Anthropic recommended)
voyage-3 1024 32000 Claude apps, cost-effective
voyage-code-3 1024 32000 Code search
voyage-finance-2 1024 32000 Financial documents
voyage-law-2 1024 32000 Legal documents
text-embedding-3-large 3072 8191 OpenAI apps, high accuracy
text-embedding-3-small 1536 8191 OpenAI apps, cost-effective
bge-large-en-v1.5 1024 512 Open source, local deployment
all-MiniLM-L6-v2 384 256 Fast, lightweight
multilingual-e5-large 1024 512 Multi-language

2. Embedding Pipeline

Document → Chunking → Preprocessing → Embedding Model → Vector
                ↓
        [Overlap, Size]  [Clean, Normalize]  [API/Local]

Templates

Template 1: Voyage AI Embeddings (Recommended for Claude)

from langchain_voyageai import VoyageAIEmbeddings
from typing import List
import os

# Initialize Voyage AI embeddings (recommended by Anthropic for Claude)
embeddings = VoyageAIEmbeddings(
    model="voyage-3-large",
    voyage_api_key=os.environ.get("VOYAGE_API_KEY")
)

def get_embeddings(texts: List[str]) -> List[List[float]]:
    """Get embeddings from Voyage AI."""
    return embeddings.embed_documents(texts)

def get_query_embedding(query: str) -> List[float]:
    """Get single query embedding."""
    return embeddings.embed_query(query)

# Specialized models for domains
code_embeddings = VoyageAIEmbeddings(model="voyage-code-3")
finance_embeddings = VoyageAIEmbeddings(model="voyage-finance-2")
legal_embeddings = VoyageAIEmbeddings(model="voyage-law-2")

Template 2: OpenAI Embeddings

from openai import OpenAI
from typing import List
import numpy as np

client = OpenAI()

def get_embeddings(
    texts: List[str],
    model: str = "text-embedding-3-small",
    dimensions: int = None
) -> List[List[float]]:
    """Get embeddings from OpenAI with optional dimension reduction."""
    # Handle batching for large lists
    batch_size = 100
    all_embeddings = []

    for i in range(0, len(texts), batch_size):
        batch = texts[i:i + batch_size]

        kwargs = {"input": batch, "model": model}
        if dimensions:
            # Matryoshka dimensionality reduction
            kwargs["dimensions"] = dimensions

        response = client.embeddings.create(**kwargs)
        embeddings = [item.embedding for item in response.data]
        all_embeddings.extend(embeddings)

    return all_embeddings


def get_embedding(text: str, **kwargs) -> List[float]:
    """Get single embedding."""
    return get_embeddings([text], **kwargs)[0]


# Dimension reduction with Matryoshka embeddings
def get_reduced_embedding(text: str, dimensions: int = 512) -> List[float]:
    """Get embedding with reduced dimensions (Matryoshka)."""
    return get_embedding(
        text,
        model="text-embedding-3-small",
        dimensions=dimensions
    )

Template 3: Local Embeddings with Sentence Transformers

from sentence_transformers import SentenceTransformer
from typing import List, Optional
import numpy as np

class LocalEmbedder:
    """Local embedding with sentence-transformers."""

    def __init__(
        self,
        model_name: str = "BAAI/bge-large-en-v1.5",
        device: str = "cuda"
    ):
        self.model = SentenceTransformer(model_name, device=device)
        self.model_name = model_name

    def embed(
        self,
        texts: List[str],
        normalize: bool = True,
        show_progress: bool = False
    ) -> np.ndarray:
        """Embed texts with optional normalization."""
        embeddings = self.model.encode(
            texts,
            normalize_embeddings=normalize,
            show_progress_bar=show_progress,
            convert_to_numpy=True
        )
        return embeddings

    def embed_query(self, query: str) -> np.ndarray:
        """Embed a query with appropriate prefix for retrieval models."""
        # BGE and similar models benefit from query prefix
        if "bge" in self.model_name.lower():
            query = f"Represent this sentence for searching relevant passages: {query}"
        return self.embed([query])[0]

    def embed_documents(self, documents: List[str]) -> np.ndarray:
        """Embed documents for indexing."""
        return self.embed(documents)


# E5 model with instructions
class E5Embedder:
    def __init__(self, model_name: str = "intfloat/multilingual-e5-large"):
        self.model = SentenceTransformer(model_name)

    def embed_query(self, query: str) -> np.ndarray:
        """E5 requires 'query:' prefix for queries."""
        return self.model.encode(f"query: {query}")

    def embed_document(self, document: str) -> np.ndarray:
        """E5 requires 'passage:' prefix for documents."""
        return self.model.encode(f"passage: {document}")

Template 4: Chunking Strategies

from typing import List, Tuple
import re

def chunk_by_tokens(
    text: str,
    chunk_size: int = 512,
    chunk_overlap: int = 50,
    tokenizer=None
) -> List[str]:
    """Chunk text by token count."""
    import tiktoken
    tokenizer = tokenizer or tiktoken.get_encoding("cl100k_base")

    tokens = tokenizer.encode(text)
    chunks = []

    start = 0
    while start < len(tokens):
        end = start + chunk_size
        chunk_tokens = tokens[start:end]
        chunk_text = tokenizer.decode(chunk_tokens)
        chunks.append(chunk_text)
        start = end - chunk_overlap

    return chunks


def chunk_by_sentences(
    text: str,
    max_chunk_size: int = 1000,
    min_chunk_size: int = 100
) -> List[str]:
    """Chunk text by sentences, respecting size limits."""
    import nltk
    sentences = nltk.sent_tokenize(text)

    chunks = []
    current_chunk = []
    current_size = 0

    for sentence in sentences:
        sentence_size = len(sentence)

        if current_size + sentence_size > max_chunk_size and current_chunk:
            chunks.append(" ".join(current_chunk))
            current_chunk = []
            current_size = 0

        current_chunk.append(sentence)
        current_size += sentence_size

    if current_chunk:
        chunks.append(" ".join(current_chunk))

    return chunks


def chunk_by_semantic_sections(
    text: str,
    headers_pattern: str = r'^#{1,3}\s+.+$'
) -> List[Tuple[str, str]]:
    """Chunk markdown by headers, preserving hierarchy."""
    lines = text.split('\n')
    chunks = []
    current_header = ""
    current_content = []

    for line in lines:
        if re.match(headers_pattern, line, re.MULTILINE):
            if current_content:
                chunks.append((current_header, '\n'.join(current_content)))
            current_header = line
            current_content = []
        else:
            current_content.append(line)

    if current_content:
        chunks.append((current_header, '\n'.join(current_content)))

    return chunks


def recursive_character_splitter(
    text: str,
    chunk_size: int = 1000,
    chunk_overlap: int = 200,
    separators: List[str] = None
) -> List[str]:
    """LangChain-style recursive splitter."""
    separators = separators or ["\n\n", "\n", ". ", " ", ""]

    def split_text(text: str, separators: List[str]) -> List[str]:
        if not text:
            return []

        separator = separators[0]
        remaining_separators = separators[1:]

        if separator == "":
            # Character-level split
            return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size - chunk_overlap)]

        splits = text.split(separator)
        chunks = []
        current_chunk = []
        current_length = 0

        for split in splits:
            split_length = len(split) + len(separator)

            if current_length + split_length > chunk_size and current_chunk:
                chunk_text = separator.join(current_chunk)

                # Recursively split if still too large
                if len(chunk_text) > chunk_size and remaining_separators:
                    chunks.extend(split_text(chunk_text, remaining_separators))
                else:
                    chunks.append(chunk_text)

                # Start new chunk with overlap
                overlap_splits = []
                overlap_length = 0
                for s in reversed(current_chunk):
                    if overlap_length + len(s) <= chunk_overlap:
                        overlap_splits.insert(0, s)
                        overlap_length += len(s)
                    else:
                        break
                current_chunk = overlap_splits
                current_length = overlap_length

            current_chunk.append(split)
            current_length += split_length

        if current_chunk:
            chunks.append(separator.join(current_chunk))

        return chunks

    return split_text(text, separators)

Template 5: Domain-Specific Embedding Pipeline

import re
from typing import List, Optional
from dataclasses import dataclass

@dataclass
class EmbeddedDocument:
    id: str
    document_id: str
    chunk_index: int
    text: str
    embedding: List[float]
    metadata: dict

class DomainEmbeddingPipeline:
    """Pipeline for domain-specific embeddings."""

    def __init__(
        self,
        embedding_model: str = "voyage-3-large",
        chunk_size: int = 512,
        chunk_overlap: int = 50,
        preprocessing_fn=None
    ):
        self.embeddings = VoyageAIEmbeddings(model=embedding_model)
        self.chunk_size = chunk_size
        self.chunk_overlap = chunk_overlap
        self.preprocess = preprocessing_fn or self._default_preprocess

    def _default_preprocess(self, text: str) -> str:
        """Default preprocessing."""
        # Remove excessive whitespace
        text = re.sub(r'\s+', ' ', text)
        # Remove special characters (customize for your domain)
        text = re.sub(r'[^\w\s.,!?-]', '', text)
        return text.strip()

    async def process_documents(
        self,
        documents: List[dict],
        id_field: str = "id",
        content_field: str = "content",
        metadata_fields: Optional[List[str]] = None
    ) -> List[EmbeddedDocument]:
        """Process documents for vector storage."""
        processed = []

        for doc in documents:
            content = doc[content_field]
            doc_id = doc[id_field]

            # Preprocess
            cleaned = self.preprocess(content)

            # Chunk
            chunks = chunk_by_tokens(
                cleaned,
                self.chunk_size,
                self.chunk_overlap
            )

            # Create embeddings
            embeddings = await self.embeddings.aembed_documents(chunks)

            # Create records
            for i, (chunk, embedding) in enumerate(zip(chunks, embeddings)):
                metadata = {"document_id": doc_id, "chunk_index": i}

                # Add specified metadata fields
                if metadata_fields:
                    for field in metadata_fields:
                        if field in doc:
                            metadata[field] = doc[field]

                processed.append(EmbeddedDocument(
                    id=f"{doc_id}_chunk_{i}",
                    document_id=doc_id,
                    chunk_index=i,
                    text=chunk,
                    embedding=embedding,
                    metadata=metadata
                ))

        return processed


# Code-specific pipeline
class CodeEmbeddingPipeline:
    """Specialized pipeline for code embeddings."""

    def __init__(self):
        # Use Voyage's code-specific model
        self.embeddings = VoyageAIEmbeddings(model="voyage-code-3")

    def chunk_code(self, code: str, language: str) -> List[dict]:
        """Chunk code by functions/classes using tree-sitter."""
        try:
            import tree_sitter_languages
            parser = tree_sitter_languages.get_parser(language)
            tree = parser.parse(bytes(code, "utf8"))

            chunks = []
            # Extract function and class definitions
            self._extract_nodes(tree.root_node, code, chunks)
            return chunks
        except ImportError:
            # Fallback to simple chunking
            return [{"text": code, "type": "module"}]

    def _extract_nodes(self, node, source_code: str, chunks: list):
        """Recursively extract function/class definitions."""
        if node.type in ['function_definition', 'class_definition', 'method_definition']:
            text = source_code[node.start_byte:node.end_byte]
            chunks.append({
                "text": text,
                "type": node.type,
                "name": self._get_name(node),
                "start_line": node.start_point[0],
                "end_line": node.end_point[0]
            })
        for child in node.children:
            self._extract_nodes(child, source_code, chunks)

    def _get_name(self, node) -> str:
        """Extract name from function/class node."""
        for child in node.children:
            if child.type == 'identifier' or child.type == 'name':
                return child.text.decode('utf8')
        return "unknown"

    async def embed_with_context(
        self,
        chunk: str,
        context: str = ""
    ) -> List[float]:
        """Embed code with surrounding context."""
        if context:
            combined = f"Context: {context}\n\nCode:\n{chunk}"
        else:
            combined = chunk
        return await self.embeddings.aembed_query(combined)

Template 6: Embedding Quality Evaluation

import numpy as np
from typing import List, Dict

def evaluate_retrieval_quality(
    queries: List[str],
    relevant_docs: List[List[str]],  # List of relevant doc IDs per query
    retrieved_docs: List[List[str]],  # List of retrieved doc IDs per query
    k: int = 10
) -> Dict[str, float]:
    """Evaluate embedding quality for retrieval."""

    def precision_at_k(relevant: set, retrieved: List[str], k: int) -> float:
        retrieved_k = retrieved[:k]
        relevant_retrieved = len(set(retrieved_k) & relevant)
        return relevant_retrieved / k if k > 0 else 0

    def recall_at_k(relevant: set, retrieved: List[str], k: int) -> float:
        retrieved_k = retrieved[:k]
        relevant_retrieved = len(set(retrieved_k) & relevant)
        return relevant_retrieved / len(relevant) if relevant else 0

    def mrr(relevant: set, retrieved: List[str]) -> float:
        for i, doc in enumerate(retrieved):
            if doc in relevant:
                return 1 / (i + 1)
        return 0

    def ndcg_at_k(relevant: set, retrieved: List[str], k: int) -> float:
        dcg = sum(
            1 / np.log2(i + 2) if doc in relevant else 0
            for i, doc in enumerate(retrieved[:k])
        )
        ideal_dcg = sum(1 / np.log2(i + 2) for i in range(min(len(relevant), k)))
        return dcg / ideal_dcg if ideal_dcg > 0 else 0

    metrics = {
        f"precision@{k}": [],
        f"recall@{k}": [],
        "mrr": [],
        f"ndcg@{k}": []
    }

    for relevant, retrieved in zip(relevant_docs, retrieved_docs):
        relevant_set = set(relevant)
        metrics[f"precision@{k}"].append(precision_at_k(relevant_set, retrieved, k))
        metrics[f"recall@{k}"].append(recall_at_k(relevant_set, retrieved, k))
        metrics["mrr"].append(mrr(relevant_set, retrieved))
        metrics[f"ndcg@{k}"].append(ndcg_at_k(relevant_set, retrieved, k))

    return {name: np.mean(values) for name, values in metrics.items()}


def compute_embedding_similarity(
    embeddings1: np.ndarray,
    embeddings2: np.ndarray,
    metric: str = "cosine"
) -> np.ndarray:
    """Compute similarity matrix between embedding sets."""
    if metric == "cosine":
        # Normalize and compute dot product
        norm1 = embeddings1 / np.linalg.norm(embeddings1, axis=1, keepdims=True)
        norm2 = embeddings2 / np.linalg.norm(embeddings2, axis=1, keepdims=True)
        return norm1 @ norm2.T
    elif metric == "euclidean":
        from scipy.spatial.distance import cdist
        return -cdist(embeddings1, embeddings2, metric='euclidean')
    elif metric == "dot":
        return embeddings1 @ embeddings2.T
    else:
        raise ValueError(f"Unknown metric: {metric}")


def compare_embedding_models(
    texts: List[str],
    models: Dict[str, callable],
    queries: List[str],
    relevant_indices: List[List[int]],
    k: int = 5
) -> Dict[str, Dict[str, float]]:
    """Compare multiple embedding models on retrieval quality."""
    results = {}

    for model_name, embed_fn in models.items():
        # Embed all texts
        doc_embeddings = np.array(embed_fn(texts))

        retrieved_per_query = []
        for query in queries:
            query_embedding = np.array(embed_fn([query])[0])
            # Compute similarities
            similarities = compute_embedding_similarity(
                query_embedding.reshape(1, -1),
                doc_embeddings,
                metric="cosine"
            )[0]
            # Get top-k indices
            top_k_indices = np.argsort(similarities)[::-1][:k]
            retrieved_per_query.append([str(i) for i in top_k_indices])

        # Convert relevant indices to string IDs
        relevant_docs = [[str(i) for i in indices] for indices in relevant_indices]

        results[model_name] = evaluate_retrieval_quality(
            queries, relevant_docs, retrieved_per_query, k
        )

    return results

Best Practices

Do's

  • Match model to use case: Code vs prose vs multilingual
  • Chunk thoughtfully: Preserve semantic boundaries
  • Normalize embeddings: For cosine similarity search
  • Batch requests: More efficient than one-by-one
  • Cache embeddings: Avoid recomputing for static content
  • Use Voyage AI for Claude apps: Recommended by Anthropic

Don'ts

  • Don't ignore token limits: Truncation loses information
  • Don't mix embedding models: Incompatible vector spaces
  • Don't skip preprocessing: Garbage in, garbage out
  • Don't over-chunk: Lose important context
  • Don't forget metadata: Essential for filtering and debugging

Resources