google-gemini-file-search
Google Gemini File Search for managed RAG with 100+ file formats. Use for document Q&A, knowledge bases, or encountering immutability errors, quota issues, polling failures. Supports Gemini 3 Pro/Flash (Gemini 2.5 legacy).
When & Why to Use This Skill
Google Gemini File Search is a fully managed RAG (Retrieval-Augmented Generation) solution designed to simplify document Q&A and knowledge management. It eliminates the need for manual vector database setup by providing automatic chunking, embedding, and indexing for over 100 file formats. Optimized for Gemini 2.5 Pro and Flash, it offers built-in grounding with citations, ensuring high-accuracy responses for complex information retrieval tasks.
Use Cases
- Automated Customer Support: Build a comprehensive knowledge base from support manuals and FAQs to provide instant, cited answers to customer inquiries.
- Technical Documentation Assistant: Index large codebases, Markdown files, and API specifications to help developers quickly find implementation details and best practices.
- Enterprise Search & SOPs: Centralize corporate policies, HR documents, and standard operating procedures (SOPs) for efficient internal employee information retrieval.
- Research & Data Analysis: Process hundreds of academic papers, market reports, and spreadsheets (PDF, Excel, Word) to extract insights and verify facts with direct source citations.
| name | google-gemini-file-search |
|---|---|
| description | Google Gemini File Search for managed RAG with 100+ file formats. Use for document Q&A, knowledge bases, or encountering immutability errors, quota issues, polling failures. Supports Gemini 3 Pro/Flash (Gemini 2.5 legacy). |
| license | MIT |
| version | "2.0.0" |
| last_verified | "2025-11-18" |
| production_tested | true |
| token_savings | "~65%" |
| errors_prevented | 8 |
| templates_included | 0 |
| references_included | 2 |
Google Gemini File Search
Status: Production Ready | Last Verified: 2025-11-18
What Is File Search?
Google Gemini File Search is fully managed RAG (Retrieval-Augmented Generation):
- Upload documents → Automatic chunking + embeddings + vector search + citations
- No vector database setup required
- 100+ file formats supported (PDF, Word, Excel, code, Markdown, JSON, etc.)
- Built-in grounding with citation metadata
- Cost-effective: $0.15/1M tokens (one-time indexing), free storage + queries
Key difference from other RAG:
- Cloudflare Vectorize: You manage chunking/embeddings
- OpenAI Files API: Tied to Assistants API threads
- File Search: Fully managed, standalone RAG
Quick Start (5 Minutes)
1. Get API Key & Install
Get API key: https://aistudio.google.com/apikey (Free tier: 1 GB storage, 1,500 requests/day)
bun add @google/genai
Version: 0.21.0+ | Node.js: 18+
2. Basic Example
import { GoogleGenerativeAI } from '@google/genai';
import fs from 'fs';
const ai = new GoogleGenerativeAI(process.env.GOOGLE_AI_API_KEY);
// Create store
const fileStore = await ai.fileSearchStores.create({
config: { displayName: 'my-knowledge-base' }
});
// Upload document
const operation = await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('./manual.pdf'),
config: {
displayName: 'Installation Manual',
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 500,
maxOverlapTokens: 50
}
}
}
});
// Poll until done
while (!operation.done) {
await new Promise(resolve => setTimeout(resolve, 1000));
operation = await ai.operations.get({ name: operation.name });
}
// Query documents
const model = ai.getGenerativeModel({
model: 'gemini-2.5-pro', // Only 2.5 Pro/Flash supported
tools: [{
fileSearchTool: {
fileSearchStores: [fileStore.name]
}
}]
});
const result = await model.generateContent('How do I install the product?');
console.log(result.response.text());
// Get citations
const grounding = result.response.candidates[0].groundingMetadata;
if (grounding) {
console.log('Sources:', grounding.groundingChunks);
}
Load references/setup-guide.md for complete walkthrough with batch uploads, error handling, and production checklist.
Critical Rules
Always Do
- Use delete + re-upload for updates (documents are immutable)
- Calculate 3x storage (embeddings + metadata = ~3x file size)
- Configure chunking (500 tokens for technical docs, 800 for prose)
- Poll operations until
done: true(with timeout) - Use force: true when deleting stores with documents
- Use Gemini 2.5 models only (2.5-pro or 2.5-flash)
- Keep metadata under 20 fields per document
- Estimate indexing costs ($0.15/1M tokens one-time)
Never Do
- Never try to update documents (no PATCH API exists)
- Never assume storage = file size (it's 3x)
- Never skip chunking config (defaults may not be optimal)
- Never upload without polling (operation may still be processing)
- Never delete without force if store has documents
- Never use Gemini 1.5 models (File Search requires 2.5)
- Never exceed 20 metadata fields (hard limit)
- Never upload large files without cost estimate
Top 3 Errors Prevented
Error 1: Document Immutability
Problem: Trying to update existing document
Solution: Delete + re-upload pattern
// Find and delete old version
const docs = await ai.fileSearchStores.documents.list({
parent: fileStore.name
});
const oldDoc = docs.documents.find(d => d.displayName === 'manual.pdf');
if (oldDoc) {
await ai.fileSearchStores.documents.delete({
name: oldDoc.name,
force: true
});
}
// Upload new version
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('manual-v2.pdf'),
config: { displayName: 'manual.pdf' }
});
Error 2: Storage Quota Exceeded
Problem: Storage calculation wrong (3x multiplier)
Solution: Estimate before upload
const fileSize = fs.statSync('data.pdf').size;
const estimatedStorage = fileSize * 3; // Embeddings + metadata
if (estimatedStorage > 1e9) {
console.warn('⚠️ May exceed free tier 1 GB limit');
}
Error 3: Model Compatibility
Problem: Using wrong model version
Solution: Use Gemini 2.5 only
// ✅ CORRECT
const model = ai.getGenerativeModel({
model: 'gemini-2.5-pro', // or gemini-2.5-flash
tools: [{ fileSearchTool: { fileSearchStores: [storeName] } }]
});
// ❌ WRONG
const model = ai.getGenerativeModel({
model: 'gemini-1.5-pro', // Not supported!
tools: [{ fileSearchTool: { fileSearchStores: [storeName] } }]
});
Load references/error-catalog.md for all 8 errors with detailed solutions including chunking, operation polling, metadata limits, and force delete requirements.
When to Use File Search
Use File Search When:
- Want fully managed RAG (no vector DB)
- Cost predictability matters (one-time indexing)
- Need 100+ file format support
- Citations are important (built-in grounding)
- Simple deployment is priority
- Documents are relatively static
Use Alternatives When:
Cloudflare Vectorize - Global edge performance, custom embeddings, real-time R2 updates OpenAI Files API - Assistants API, conversational threads, very large collections (10,000+)
Common Patterns
Pattern 1: Customer Support Knowledge Base
// Upload support docs with metadata
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('troubleshooting.pdf'),
config: {
displayName: 'Troubleshooting Guide',
customMetadata: {
doc_type: 'support',
category: 'troubleshooting',
language: 'en'
}
}
});
Pattern 2: Batch Document Upload
const files = ['doc1.pdf', 'doc2.md', 'doc3.docx'];
const uploadPromises = files.map(file =>
ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream(file),
config: { displayName: file }
})
);
const operations = await Promise.all(uploadPromises);
// Poll all operations
for (const op of operations) {
let operation = op;
while (!operation.done) {
await new Promise(resolve => setTimeout(resolve, 1000));
operation = await ai.operations.get({ name: operation.name });
}
console.log('✅', operation.response.displayName);
}
Pattern 3: Document Update Flow
// 1. List existing documents
const docs = await ai.fileSearchStores.documents.list({
parent: fileStore.name
});
// 2. Delete old version
const oldDoc = docs.documents.find(d => d.displayName === 'manual.pdf');
if (oldDoc) {
await ai.fileSearchStores.documents.delete({
name: oldDoc.name,
force: true
});
}
// 3. Upload new version
const operation = await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('manual-v2.pdf'),
config: {
displayName: 'manual.pdf',
customMetadata: {
version: '2.0',
updated_at: new Date().toISOString()
}
}
});
// 4. Poll until done
while (!operation.done) {
await new Promise(resolve => setTimeout(resolve, 1000));
operation = await ai.operations.get({ name: operation.name });
}
Load references/setup-guide.md for additional patterns including code documentation search and internal knowledge bases.
When to Load References
Load references/setup-guide.md when:
- First-time File Search setup
- Need step-by-step walkthrough with all configuration options
- Configuring batch upload strategies
- Production deployment checklist
- Complete API initialization patterns
Load references/error-catalog.md when:
- Encountering any of 8 common errors
- Need detailed error solutions with code examples
- Prevention checklist required
- Troubleshooting upload/query issues
- Understanding chunking, metadata, or cost calculation problems
Supported File Formats
100+ formats including:
- Documents: PDF, Word (.docx), Excel (.xlsx), PowerPoint (.pptx)
- Text: Markdown (.md), Plain text (.txt), JSON, CSV
- Code: Python, JavaScript, TypeScript, Java, C++, Go, Rust, etc.
Not supported: Images in PDFs (text extraction only), Audio files, Video files
Pricing
Indexing (one-time): $0.15 per 1M tokens Storage: Free (10 GB - 1 TB depending on tier) Query embeddings: Free (retrieved context counts as input tokens)
Example: 1,000-page document ≈ 500k tokens → Indexing cost: $0.075 → Storage: ~1.5 GB (3x multiplier)
Chunking Guidelines
Technical docs: 500 tokens/chunk, 50 overlap Prose: 800 tokens/chunk, 80 overlap Legal: 300 tokens/chunk, 30 overlap
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 500, // Smaller = more precise
maxOverlapTokens: 50 // 10% overlap recommended
}
}
Resources
References (references/):
setup-guide.md- Complete setup walkthrough (authentication, store creation, file upload, batch patterns, production checklist)error-catalog.md- All 8 documented errors with solutions (immutability, storage, chunking, metadata, costs, polling, force delete, model compatibility)
Official Documentation:
- File Search Overview: https://ai.google.dev/api/file-search
- API Reference: https://ai.google.dev/api/file-search/documents
- Blog Post: https://blog.google/technology/developers/file-search-gemini-api/
Questions? Issues?
- Check
references/setup-guide.mdfor complete setup - Review
references/error-catalog.mdfor all 8 errors - Verify model version (must be Gemini 2.5)
- Check storage calculation (3x file size)