marimo-editor

dakesan's avatarfrom dakesan

This skill should be used when working with marimo reactive notebooks for data science and analytics.Triggers include:- Creating new marimo notebooks- Converting Jupyter notebooks to marimo- Editing existing marimo notebooks- Implementing reactive patterns and UI components- Building interactive data visualizations with marimo

0stars🔀0forks📁View on GitHub🕐Updated Jan 6, 2026

When & Why to Use This Skill

This Claude skill provides expert guidance for developing reactive data science notebooks using marimo. It enables users to create reproducible, interactive, and high-performance data analysis workflows by leveraging marimo's unique directed acyclic graph (DAG) execution model, ensuring that code remains clean and visualizations stay synchronized with data changes.

Use Cases

  • Converting legacy Jupyter notebooks to marimo to eliminate hidden state issues and improve reproducibility.
  • Building interactive data dashboards with reactive UI components like sliders, dropdowns, and data explorers for real-time parameter tuning.
  • Performing SQL-based data analysis using integrated DuckDB cells to query dataframes and visualize results seamlessly.
  • Developing complex data visualizations using Altair, Plotly, or Matplotlib that automatically update based on user input or data changes.
  • Implementing clean, modular data science projects that follow best practices for variable declaration and dependency management.
namemarimo-editor
description|

Marimo Notebook Assistant

This skill provides specialized guidance for creating data science notebooks using marimo's reactive programming model. Focus on creating clear, efficient, and reproducible data analysis workflows.

Core Capabilities

  • Data science and analytics using marimo notebooks
  • Complete, runnable code that follows best practices
  • Reproducibility and clear documentation
  • Interactive data visualizations and analysis
  • Understanding of marimo's reactive programming model

Marimo Fundamentals

Marimo is a reactive notebook that differs from traditional notebooks in key ways:

  • Cells execute automatically when their dependencies change
  • Variables cannot be redeclared across cells
  • The notebook forms a directed acyclic graph (DAG)
  • The last expression in a cell is automatically displayed
  • UI elements are reactive and update the notebook automatically

Code Requirements

  1. All code must be complete and runnable
  2. Follow consistent coding style throughout
  3. Include descriptive variable names and helpful comments
  4. Import all modules in the first cell, always including import marimo as mo
  5. Never redeclare variables across cells
  6. Ensure no cycles in notebook dependency graph
  7. The last expression in a cell is automatically displayed, just like in Jupyter notebooks
  8. Don't include comments in markdown cells
  9. Don't include comments in SQL cells

Reactivity

Marimo's reactivity means:

  • When a variable changes, all cells that use that variable automatically re-execute
  • UI elements trigger updates when their values change without explicit callbacks
  • UI element values are accessed through .value attribute
  • Cannot access a UI element's value in the same cell where it's defined

Best Practices

Data Handling

  • Use pandas for data manipulation
  • Implement proper data validation
  • Handle missing values appropriately
  • Use efficient data structures
  • A variable in the last expression of a cell is automatically displayed as a table

Visualization

  • For matplotlib: use plt.gca() as the last expression instead of plt.show()
  • For plotly: return the figure object directly
  • For altair: return the chart object directly
  • Include proper labels, titles, and color schemes
  • Make visualizations interactive where appropriate

UI Elements

  • Access UI element values with .value attribute (e.g., slider.value)
  • Create UI elements in one cell and reference them in later cells
  • Create intuitive layouts with mo.hstack(), mo.vstack(), and mo.tabs()
  • Prefer reactive updates over callbacks (marimo handles reactivity automatically)
  • Group related UI elements for better organization

Data Sources

  • Prefer GitHub-hosted datasets (e.g., raw.githubusercontent.com)
  • Use CORS proxy for external URLs: https://corsproxy.marimo.app/
  • Implement proper error handling for data loading
  • Consider using vega_datasets for common example datasets

SQL

  • When writing duckdb, prefer using marimo's SQL cells, which start with _df = mo.sql(query)
  • See the SQL with duckdb example for an example on how to do this
  • Don't add comments in cells that use mo.sql()
  • Consider using vega_datasets for common example datasets

Troubleshooting

Common issues and solutions:

  • Circular dependencies: Reorganize code to remove cycles in the dependency graph
  • UI element value access: Move access to a separate cell from definition
  • Visualization not showing: Ensure the visualization object is the last expression

Available UI Elements

  • mo.ui.altair_chart(altair_chart)
  • mo.ui.button(value=None, kind='primary')
  • mo.ui.run_button(label=None, tooltip=None, kind='primary')
  • mo.ui.checkbox(label='', value=False)
  • mo.ui.date(value=None, label=None, full_width=False)
  • mo.ui.dropdown(options, value=None, label=None, full_width=False)
  • mo.ui.file(label='', multiple=False, full_width=False)
  • mo.ui.number(value=None, label=None, full_width=False)
  • mo.ui.radio(options, value=None, label=None, full_width=False)
  • mo.ui.refresh(options: List[str], default_interval: str)
  • mo.ui.slider(start, stop, value=None, label=None, full_width=False, step=None)
  • mo.ui.range_slider(start, stop, value=None, label=None, full_width=False, step=None)
  • mo.ui.table(data, columns=None, on_select=None, sortable=True, filterable=True)
  • mo.ui.text(value='', label=None, full_width=False)
  • mo.ui.text_area(value='', label=None, full_width=False)
  • mo.ui.data_explorer(df)
  • mo.ui.dataframe(df)
  • mo.ui.plotly(plotly_figure)
  • mo.ui.tabs(elements: dict[str, mo.ui.Element])
  • mo.ui.array(elements: list[mo.ui.Element])
  • mo.ui.form(element: mo.ui.Element, label='', bordered=True)

Layout and Utility Functions

  • mo.md(text) - display markdown
  • mo.stop(predicate, output=None) - stop execution conditionally
  • mo.Html(html) - display HTML
  • mo.image(image) - display an image
  • mo.hstack(elements) - stack elements horizontally
  • mo.vstack(elements) - stack elements vertically
  • mo.tabs(elements) - create a tabbed interface

Examples

Basic UI with Reactivity

# Cell 1
import marimo as mo
import matplotlib.pyplot as plt
import numpy as np

# Cell 2
# Create a slider and display it
n_points = mo.ui.slider(10, 100, value=50, label="Number of points")
n_points  # Display the slider

# Cell 3
# Generate random data based on slider value
# This cell automatically re-executes when n_points.value changes
x = np.random.rand(n_points.value)
y = np.random.rand(n_points.value)

plt.figure(figsize=(8, 6))
plt.scatter(x, y, alpha=0.7)
plt.title(f"Scatter plot with {n_points.value} points")
plt.xlabel("X axis")
plt.ylabel("Y axis")
plt.gca()  # Return the current axes to display the plot

Data Explorer

# Cell 1
import marimo as mo
import pandas as pd
from vega_datasets import data

# Cell 2
# Load and display dataset with interactive explorer
cars_df = data.cars()
mo.ui.data_explorer(cars_df)

Multiple UI Elements

# Cell 1
import marimo as mo
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Cell 2
# Load dataset
iris = sns.load_dataset('iris')

# Cell 3
# Create UI elements
species_selector = mo.ui.dropdown(
    options=["All"] + iris["species"].unique().tolist(),
    value="All",
    label="Species"
)
x_feature = mo.ui.dropdown(
    options=iris.select_dtypes('number').columns.tolist(),
    value="sepal_length",
    label="X Feature"
)
y_feature = mo.ui.dropdown(
    options=iris.select_dtypes('number').columns.tolist(),
    value="sepal_width",
    label="Y Feature"
)

# Display UI elements in a horizontal stack
mo.hstack([species_selector, x_feature, y_feature])

# Cell 4
# Filter data based on selection
filtered_data = iris if species_selector.value == "All" else iris[iris["species"] == species_selector.value]

# Create visualization based on UI selections
plt.figure(figsize=(10, 6))
sns.scatterplot(
    data=filtered_data,
    x=x_feature.value,
    y=y_feature.value,
    hue="species"
)
plt.title(f"{y_feature.value} vs {x_feature.value}")
plt.gca()

Interactive Chart with Altair

# Cell 1
import marimo as mo
import altair as alt
import pandas as pd

# Cell 2
# Load dataset
cars_df = pd.read_csv('https://raw.githubusercontent.com/vega/vega-datasets/master/data/cars.json')
_chart = alt.Chart(cars_df).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)

chart = mo.ui.altair_chart(_chart)
chart

# Cell 3
# Display the selection
chart.value

Run Button Example

# Cell 1
import marimo as mo

# Cell 2
first_button = mo.ui.run_button(label="Option 1")
second_button = mo.ui.run_button(label="Option 2")
[first_button, second_button]

# Cell 3
if first_button.value:
    print("You chose option 1!")
elif second_button.value:
    print("You chose option 2!")
else:
    print("Click a button!")

SQL with DuckDB

# Cell 1
import marimo as mo

# Cell 2
# Load dataset
cars_df = pd.read_csv('https://raw.githubusercontent.com/vega/vega-datasets/master/data/cars.json')

# Cell 3
_df = mo.sql("SELECT * from cars_df WHERE Miles_per_Gallon > 20")

Writing LaTeX in Markdown

# Cell 1
import marimo as mo

# Cell 2
mo.md(r"""

The quadratic function $f$ is defined as

$$f(x) = x^2.$$
""")