mcp-cli-scripts

jezweb's avatarfrom jezweb

Build CLI scripts alongside MCP servers for terminal environments. Scripts provide file I/O, batch processing, caching,and richer output formats that remote MCP servers cannot offer. Includes templates for TypeScript scripts and SCRIPTS.md.Use when: creating MCP server companion scripts, adding batch processing to MCP tools, saving MCP results to files,building CLI wrappers for APIs, or troubleshooting "context too large", "no file access", or batch input handling.

109stars🔀16forks📁View on GitHub🕐Updated Dec 28, 2025

When & Why to Use This Skill

The MCP CLI Scripts skill empowers developers to build high-performance command-line interface (CLI) scripts that complement Model Context Protocol (MCP) servers. It bridges the gap between remote AI capabilities and local development environments by providing essential features like direct file system access, batch processing, and local caching. This skill is specifically designed to optimize workflows in terminal environments like Claude Code, solving common limitations such as context window overflows and the lack of persistent local storage in remote MCP implementations.

Use Cases

  • Batch Data Processing: Efficiently process large datasets from local files (CSV, JSON) by handling inputs in batches, preventing 'context too large' errors in AI models.
  • Local File I/O and Persistence: Automatically save results from complex AI-driven tasks directly to the local file system in structured formats like JSON, CSV, or tables.
  • Performance Optimization via Caching: Implement local caching mechanisms for API responses within CLI scripts to speed up repetitive tasks and reduce external API costs.
  • Custom CLI Tooling: Build specialized TypeScript-based CLI wrappers for internal APIs that allow Claude Code to interact with local infrastructure and development tools seamlessly.
  • Complex Task Chaining: Create script pipelines that pipe and chain multiple operations together, allowing for more sophisticated automation than single-call MCP tools.
namemcp-cli-scripts
description|
Use whenMCP companion scripts, batch processing, saving results to files, CLI API wrappers. Troubleshoot: context too large, no file access, batch input.
user-invocabletrue

MCP CLI Scripts Pattern

Status: Production Ready Last Updated: 2026-01-09 Dependencies: tsx (dev dependency) Current Versions: tsx@4.21.0


Why CLI Scripts Alongside MCP Servers?

When building MCP servers, also create companion CLI scripts that provide the same (and often extended) functionality for use with Claude Code in terminal environments.

Aspect Remote MCP (Claude.ai) CLI Scripts (Claude Code)
Context Results flow through model context window Results stay local, only relevant parts shared
File System No access Full read/write access
Batch Operations One call at a time Can process files of inputs
Caching Stateless Can cache results locally
Output JSON to model JSON, CSV, table, file, or stdout
Chaining Model orchestrates Scripts can pipe/chain directly

Directory Structure

mcp-{name}/
├── src/
│   └── index.ts              # MCP server (for Claude.ai, remote clients)
├── scripts/
│   ├── {tool-name}.ts        # One script per tool
│   ├── {another-tool}.ts
│   └── _shared.ts            # Shared auth/config helpers (optional)
├── SCRIPTS.md                # Documents available scripts for Claude Code
├── package.json
└── README.md

The 5 Design Principles

1. One Script Per Tool

Each script does one thing well, matching an MCP tool but with extended capabilities.

2. JSON Output by Default

Scripts output JSON to stdout for easy parsing. Claude Code can read and use the results.

// Good - structured output
console.log(JSON.stringify({ success: true, data: result }, null, 2));

// Avoid - unstructured text (unless --format text requested)
console.log("Found 5 results:");

3. Extended Capabilities for Local Use

CLI scripts can offer features that don't make sense for remote MCP:

// Input/Output files
--input data.csv          // Batch process from file
--output results.json     // Save results to file
--append                  // Append to existing file

// Caching
--cache                   // Use local cache
--cache-ttl 3600          // Cache for 1 hour
--no-cache                // Force fresh request

// Output formats
--format json|csv|table   // Different output formats
--quiet                   // Suppress non-essential output
--verbose                 // Extra debugging info

// Batch operations
--batch                   // Process multiple items
--concurrency 5           // Parallel processing limit

4. Consistent Argument Patterns

Use consistent patterns across all scripts:

# Standard patterns
--input <file>            # Read input from file
--output <file>           # Write output to file
--format <type>           # Output format
--profile <name>          # Auth profile (for multi-account)
--verbose                 # Debug output
--help                    # Show usage

5. Shebang and Direct Execution

Scripts should be directly executable:

#!/usr/bin/env npx tsx
/**
 * Brief description of what this script does
 *
 * Usage:
 *   npx tsx scripts/tool-name.ts <required-arg>
 *   npx tsx scripts/tool-name.ts --option value
 *
 * Examples:
 *   npx tsx scripts/tool-name.ts 12345
 *   npx tsx scripts/tool-name.ts --input batch.csv --output results.json
 */

Critical Rules

Always Do

✅ Use #!/usr/bin/env npx tsx shebang (not node or ts-node) ✅ Output JSON to stdout by default ✅ Use consistent argument patterns across all scripts ✅ Document scripts in SCRIPTS.md ✅ Handle errors with structured JSON: { success: false, error: "..." }

Never Do

❌ Use console.log() for prose output (use structured JSON) ❌ Use different argument patterns per script ❌ Forget to document the script in SCRIPTS.md ❌ Use node or ts-node in shebang (tsx handles ESM+TypeScript)


When to Use Scripts vs MCP

Use CLI scripts when:

  • Working in terminal/Claude Code environment
  • Need to save results to files
  • Processing batch inputs from files
  • Chaining multiple operations
  • Need caching for repeated lookups
  • Want richer output formats

Use MCP tools when:

  • In Claude.ai web interface
  • Simple one-off lookups
  • No file I/O needed
  • Building conversational flows

Shared Code Between MCP and Scripts

If you want to share logic between MCP and scripts, extract to a core module:

src/
├── core/
│   ├── lookup.ts         # Pure function, no I/O assumptions
│   └── index.ts          # Export all core functions
├── mcp/
│   └── index.ts          # MCP handlers, import from core
└── cli/
    └── lookup.ts         # CLI wrapper, import from core

However, keeping them separate is also fine - the scripts may evolve to have capabilities the MCP can't support, and that's okay.


Using Bundled Resources

Templates (templates/)

script-template.ts: Complete TypeScript script template with argument parsing, JSON output, and file I/O patterns.

# Copy to your project
cp ~/.claude/skills/mcp-cli-scripts/templates/script-template.ts scripts/new-tool.ts

SCRIPTS-TEMPLATE.md: Template for documenting available scripts in an MCP server repo.

# Copy to your project
cp ~/.claude/skills/mcp-cli-scripts/templates/SCRIPTS-TEMPLATE.md SCRIPTS.md

Rules (rules/)

mcp-cli-scripts.md: Correction rules for script files. Copy to .claude/rules/ in projects:

cp ~/.claude/skills/mcp-cli-scripts/rules/mcp-cli-scripts.md .claude/rules/

Dependencies

Required:

  • tsx@4.21.0 - TypeScript execution without compilation

Add to package.json:

{
  "devDependencies": {
    "tsx": "^4.21.0"
  }
}

Official Documentation


Package Versions (Verified 2026-01-09)

{
  "devDependencies": {
    "tsx": "^4.21.0"
  }
}

Complete Setup Checklist

  • Create scripts/ directory in MCP server project
  • Add tsx to devDependencies
  • Create first script from template
  • Create SCRIPTS.md from template
  • Test script: npx tsx scripts/tool-name.ts --help
  • Verify JSON output format
  • Document all scripts in SCRIPTS.md