nixtla-timegpt-finetune-lab

intent-solutions-io's avatarfrom intent-solutions-io

Enables TimeGPT model fine-tuning on custom datasets with Nixtla SDK. Guides dataset preparation, job submission, status monitoring, model comparison, and accuracy benchmarking. Activates when user needs TimeGPT fine-tuning, custom model training, domain-specific optimization, or zero-shot vs fine-tuned comparison.

0stars🔀0forks📁View on GitHub🕐Updated Jan 10, 2026

When & Why to Use This Skill

This Claude skill streamlines the end-to-end workflow for fine-tuning Nixtla's TimeGPT models on custom datasets. It automates the technical complexities of time-series forecasting optimization, including data validation, API job management, and rigorous performance benchmarking. By facilitating the transition from zero-shot forecasting to domain-specific models, it helps data scientists and developers achieve higher predictive accuracy with minimal manual overhead.

Use Cases

  • Retail Demand Forecasting: Fine-tuning models on historical sales data to capture unique seasonal patterns and local consumer behavior for better inventory management.
  • Financial Market Analysis: Optimizing TimeGPT for specific asset classes or high-frequency trading data to improve trend prediction and risk assessment.
  • Energy Grid Management: Training models on regional utility usage and weather data to provide more precise load forecasting for infrastructure planning.
  • Model Performance Benchmarking: Systematically comparing out-of-the-box zero-shot results against fine-tuned versions to quantify accuracy gains and justify production deployment.
namenixtla-timegpt-finetune-lab
descriptionEnables TimeGPT model fine-tuning on custom datasets with Nixtla SDK. Guides dataset preparation, job submission, status monitoring, model comparison, and accuracy benchmarking. Activates when user needs TimeGPT fine-tuning, custom model training, domain-specific optimization, or zero-shot vs fine-tuned comparison.
allowed-tools"Read,Write,Glob,Grep,Edit"
version"1.0.0"
licenseMIT

Nixtla TimeGPT Fine-Tuning Lab

Guide users through production-ready TimeGPT fine-tuning workflows.

Overview

This skill manages TimeGPT fine-tuning:

  • Dataset preparation: Validate and format training data
  • Job submission: Submit fine-tuning jobs to TimeGPT API
  • Status monitoring: Track job progress until completion
  • Model comparison: Compare zero-shot vs fine-tuned performance

Prerequisites

Required:

  • Python 3.8+
  • nixtla package
  • NIXTLA_API_KEY environment variable

Installation:

pip install nixtla pandas utilsforecast
export NIXTLA_API_KEY='your-api-key'

Get API Key: https://dashboard.nixtla.io

Instructions

Step 1: Prepare Dataset

Ensure data is in Nixtla schema:

python {baseDir}/scripts/prepare_finetune_data.py \
    --input data/sales.csv \
    --output data/finetune_train.csv

Step 2: Configure Fine-Tuning

python {baseDir}/scripts/configure_finetune.py \
    --train data/finetune_train.csv \
    --model_name "sales-model-v1" \
    --horizon 14 \
    --freq D

Step 3: Submit Job

python {baseDir}/scripts/submit_finetune.py \
    --config forecasting/finetune_config.yml

Step 4: Monitor Progress

python {baseDir}/scripts/monitor_finetune.py \
    --job_id <job_id>

Step 5: Compare Models

python {baseDir}/scripts/compare_finetuned.py \
    --test data/test.csv \
    --finetune_id <model_id>

Output

  • forecasting/finetune_config.yml: Fine-tuning configuration
  • forecasting/artifacts/finetune_model_id.txt: Saved model ID
  • forecasting/results/comparison_metrics.csv: Performance comparison

Error Handling

  1. Error: NIXTLA_API_KEY not set Solution: Export your API key: export NIXTLA_API_KEY='...'

  2. Error: Insufficient training data Solution: Need 100+ observations per series

  3. Error: Fine-tuning job failed Solution: Check data format, ensure no NaN values

  4. Error: Model ID not found Solution: Verify job completed, check artifacts directory

Examples

Example 1: Basic Fine-Tuning

# Prepare data
python {baseDir}/scripts/prepare_finetune_data.py \
    --input sales.csv --output train.csv

# Submit job
python {baseDir}/scripts/submit_finetune.py \
    --train train.csv \
    --model_name "my-sales-model" \
    --horizon 14

Output:

Fine-tuning job submitted: job_abc123
Model ID saved to: artifacts/finetune_model_id.txt

Example 2: Compare Zero-Shot vs Fine-Tuned

python {baseDir}/scripts/compare_finetuned.py \
    --test test.csv \
    --finetune_id my-sales-model

Output:

Model Comparison:
  TimeGPT Zero-Shot: SMAPE=12.3%
  TimeGPT Fine-Tuned: SMAPE=8.7%
  Improvement: 29.3%

Resources

Related Skills:

  • nixtla-schema-mapper: Prepare data before fine-tuning
  • nixtla-experiment-architect: Create baseline experiments
  • nixtla-usage-optimizer: Evaluate cost-effectiveness