nixtla-universal-validator

intent-solutions-io's avatarfrom intent-solutions-io

Validate Nixtla skills and plugins with deterministic evidence bundles and strict schema gates. Use when auditing changes or enforcing compliance. Trigger with 'run validation' or 'audit validators'.

0stars🔀0forks📁View on GitHub🕐Updated Jan 10, 2026

When & Why to Use This Skill

The Nixtla Universal Validator is a robust framework designed to ensure the integrity, compliance, and functional correctness of AI agent skills and plugins. By combining a multi-phase subagent workflow with a deterministic runner, it generates comprehensive evidence bundles—including JSON summaries, markdown reports, and execution logs. This tool acts as a strict quality gate, automating schema verification and behavioral testing to maintain high standards in agentic ecosystems.

Use Cases

  • CI/CD Integration for Agent Skills: Automatically trigger validation suites during pull requests to ensure new skills or plugins adhere to strict schema gates and structural requirements before deployment.
  • Compliance and Security Auditing: Generate deterministic evidence bundles (reports and logs) to provide a transparent audit trail for enterprise-level compliance and regulatory reviews.
  • Regression Testing for Plugin Updates: Run behavioral checks and 'ground-truth' log analysis to verify that updates to existing plugins do not introduce functional regressions or break downstream dependencies.
  • Automated Quality Assurance Reports: Utilize the multi-phase subagent workflow to reconcile complex validation data into human-readable summaries, providing developers with clear pass/fail results and actionable next steps.
namenixtla-universal-validator
description"Validate Nixtla skills and plugins with deterministic evidence bundles and strict schema gates. Use when auditing changes or enforcing compliance. Trigger with 'run validation' or 'audit validators'."
allowed-tools"Read,Write,Bash(python:*),Bash(bash:*),Bash(pytest:*)"
version"1.0.0"
author"Jeremy Longshore <jeremy@intentsolutions.io>"
licenseMIT

Nixtla Universal Validator

Purpose

Produce deterministic, reviewable validation evidence (reports + JSON + logs) for a repo, plugin, or skill.

Overview

This skill combines two layers:

  • A multi-phase subagent workflow (for human-readable analysis + reconciliation)
  • A deterministic validator runner (for ground-truth logs and machine-readable summaries)

Validation runs as a pipeline with deterministic gates:

  • Discover what changed and what should be validated
  • Validate schemas/structure (skills + plugins) using canonical repo validators
  • Run behavioral checks (tests) when requested
  • Reconcile results into a single evidence bundle with pass/fail and next actions

This pattern generalizes beyond Nixtla by swapping the check catalog (a list of commands + expected artifacts).

Prerequisites

  • Python 3.11+
  • Repo validators available:
    • 004-scripts/validate_skills_v2.py
    • 004-scripts/validate-all-plugins.sh
  • Optional for plugin validation: jq

Instructions

Step 1: Create a run directory

Use the built-in runner to create a timestamped evidence bundle under reports/<project>/<timestamp>/.

Step 2: Pick a target scope

Choose one:

  1. Repo root: validate everything
  2. A plugin folder: 005-plugins/<plugin>
  3. A skill folder: .claude/skills/<skill> or 003-skills/.claude/skills/<skill>

Step 3: Run the deterministic validator suite

python {baseDir}/scripts/run_validator_suite.py \
  --target . \
  --project nixtla \
  --out reports/nixtla

List built-in profiles:

python {baseDir}/scripts/run_validator_suite.py \
  --list-profiles \
  --target . \
  --project nixtla \
  --out reports/nixtla

To validate a single plugin:

python {baseDir}/scripts/run_validator_suite.py \
  --target 005-plugins/nixtla-baseline-lab \
  --project nixtla-baseline-lab \
  --out reports/nixtla-baseline-lab

Step 4: (Optional) Include tests

python {baseDir}/scripts/run_validator_suite.py \
  --target . \
  --project nixtla \
  --out reports/nixtla \
  --run-tests

Step 4b: (Optional) Run an enterprise profile

python {baseDir}/scripts/run_validator_suite.py \
  --target . \
  --project nixtla \
  --out reports/nixtla \
  --profile enterprise \
  --fail-on-warn \
  --run-tests

Step 5: (Optional) Use the multi-phase subagent workflow

Run phases in order using the prompts in {baseDir}/agents/ and procedures in {baseDir}/references/. Each phase must write a report file under the run directory and return strict JSON per the phase contract.

Output

Each run creates a timestamped evidence bundle:

  • reports/<project>/<timestamp>/summary.json
  • reports/<project>/<timestamp>/report.md
  • reports/<project>/<timestamp>/checks/*.log

Error Handling

  1. Error: Validator command not found
    Solution: Confirm repo scripts exist and run from the repo root.

  2. Error: Plugin validation fails due to jq
    Solution: Install jq or run only skill validation.

  3. Error: Tests fail after schema passes
    Solution: Treat this as a behavioral regression; fix tests or code, then re-run.

Examples

Common validations:

# Strict schema/structure gates
python 004-scripts/validate_skills_v2.py --fail-on-warn
bash 004-scripts/validate-all-plugins.sh .

Generate an evidence bundle (profile-driven):

# Generate a single evidence bundle for a PR
python {baseDir}/scripts/run_validator_suite.py \
  --target . \
  --project pr-1234 \
  --out reports/pr-1234 \
  --run-tests

Resources

  • Subagent orchestration pattern: 000-docs/000a-planned-skills/templates/verification-pipeline/README.md
  • Canonical skills validator: 004-scripts/validate_skills_v2.py
  • Canonical plugin validator: 004-scripts/validate-all-plugins.sh
  • Subagent prompts: {baseDir}/agents/
  • Phase procedures: {baseDir}/references/
nixtla-universal-validator – AI Agent Skills | Claude Skills