observability

doanchienthangdev's avatarfrom doanchienthangdev

Production observability with structured logging, metrics collection, distributed tracing, and alerting

0stars🔀0forks📁View on GitHub🕐Updated Jan 8, 2026

When & Why to Use This Skill

This Claude skill provides a comprehensive framework for implementing production-grade observability. It covers the three essential pillars—structured logging, metrics collection, and distributed tracing—using industry-standard tools like Pino, Prometheus, OpenTelemetry, and Sentry. By integrating these features, developers can gain deep insights into system health, accelerate debugging, and establish proactive alerting mechanisms to ensure high availability and performance.

Use Cases

  • Debugging Distributed Microservices: Utilize OpenTelemetry and correlation IDs to trace request flows across multiple services, pinpointing the exact source of latency or failure.
  • Real-time System Performance Tracking: Deploy Prometheus metrics to monitor API response times, throughput, and resource utilization, enabling data-driven performance optimization.
  • Automated Incident Alerting: Configure sophisticated alerting rules to notify engineering teams of critical issues like high error rates, memory leaks, or service outages before they impact end-users.
  • Centralized Error Management: Implement Sentry integration to capture unhandled exceptions with rich context and stack traces, significantly reducing the Mean Time to Resolution (MTTR).
  • Comprehensive Health Monitoring: Establish robust liveness and readiness probes that verify the status of databases, caches, and external dependencies to ensure reliable service orchestration.
nameobservability
descriptionProduction observability with structured logging, metrics collection, distributed tracing, and alerting
categorydevops

Observability

Implement production observability with structured logging, metrics, distributed tracing, and alerting. This skill covers the three pillars of observability for production systems.

Purpose

Understand and debug production systems:

  • Implement structured, searchable logging
  • Collect and visualize application metrics
  • Trace requests across distributed services
  • Set up meaningful alerts
  • Create actionable dashboards
  • Debug production issues efficiently

Features

1. Structured Logging

import pino from 'pino';
import { v4 as uuid } from 'uuid';

// Logger configuration
const logger = pino({
  level: process.env.LOG_LEVEL || 'info',
  formatters: {
    level: (label) => ({ level: label }),
    bindings: () => ({}),
  },
  timestamp: () => `,"timestamp":"${new Date().toISOString()}"`,
  base: {
    service: process.env.SERVICE_NAME,
    environment: process.env.NODE_ENV,
    version: process.env.APP_VERSION,
  },
  redact: ['password', 'token', 'authorization', 'cookie', '*.password'],
});

// Child logger with context
function createRequestLogger(req: Request) {
  return logger.child({
    requestId: req.headers['x-request-id'] || uuid(),
    userId: req.user?.id,
    path: req.path,
    method: req.method,
  });
}

// Logging middleware
function loggingMiddleware(req: Request, res: Response, next: NextFunction) {
  const log = createRequestLogger(req);
  req.log = log;

  const startTime = Date.now();

  // Log request
  log.info({ type: 'request' }, 'Incoming request');

  // Log response
  res.on('finish', () => {
    const duration = Date.now() - startTime;
    const logData = {
      type: 'response',
      statusCode: res.statusCode,
      duration,
      contentLength: res.get('content-length'),
    };

    if (res.statusCode >= 500) {
      log.error(logData, 'Request failed');
    } else if (res.statusCode >= 400) {
      log.warn(logData, 'Request error');
    } else {
      log.info(logData, 'Request completed');
    }
  });

  next();
}

// Structured error logging
function logError(error: Error, context?: Record<string, any>) {
  logger.error({
    error: {
      message: error.message,
      name: error.name,
      stack: error.stack,
      ...(error as any).details,
    },
    ...context,
  }, 'Error occurred');
}

// Business event logging
interface BusinessEvent {
  event: string;
  userId?: string;
  data: Record<string, any>;
  tags?: string[];
}

function logBusinessEvent(event: BusinessEvent) {
  logger.info({
    type: 'business_event',
    event: event.event,
    userId: event.userId,
    data: event.data,
    tags: event.tags,
  }, `Business event: ${event.event}`);
}

// Usage
logBusinessEvent({
  event: 'order.completed',
  userId: 'user_123',
  data: {
    orderId: 'order_456',
    total: 99.99,
    items: 3,
  },
  tags: ['checkout', 'revenue'],
});

2. Metrics with Prometheus

import { Registry, Counter, Histogram, Gauge, collectDefaultMetrics } from 'prom-client';

// Create registry
const register = new Registry();

// Collect Node.js metrics
collectDefaultMetrics({ register });

// Custom metrics
const httpRequestDuration = new Histogram({
  name: 'http_request_duration_seconds',
  help: 'Duration of HTTP requests in seconds',
  labelNames: ['method', 'route', 'status_code'],
  buckets: [0.01, 0.05, 0.1, 0.5, 1, 2, 5],
  registers: [register],
});

const httpRequestTotal = new Counter({
  name: 'http_requests_total',
  help: 'Total number of HTTP requests',
  labelNames: ['method', 'route', 'status_code'],
  registers: [register],
});

const activeConnections = new Gauge({
  name: 'active_connections',
  help: 'Number of active connections',
  registers: [register],
});

const businessMetrics = {
  ordersTotal: new Counter({
    name: 'orders_total',
    help: 'Total number of orders',
    labelNames: ['status', 'payment_method'],
    registers: [register],
  }),
  orderValue: new Histogram({
    name: 'order_value_dollars',
    help: 'Value of orders in dollars',
    buckets: [10, 50, 100, 250, 500, 1000],
    registers: [register],
  }),
  activeUsers: new Gauge({
    name: 'active_users',
    help: 'Number of active users',
    registers: [register],
  }),
};

// Metrics middleware
function metricsMiddleware(req: Request, res: Response, next: NextFunction) {
  const start = Date.now();

  res.on('finish', () => {
    const duration = (Date.now() - start) / 1000;
    const route = req.route?.path || req.path;

    httpRequestDuration
      .labels(req.method, route, res.statusCode.toString())
      .observe(duration);

    httpRequestTotal
      .labels(req.method, route, res.statusCode.toString())
      .inc();
  });

  next();
}

// Expose metrics endpoint
app.get('/metrics', async (req, res) => {
  res.set('Content-Type', register.contentType);
  res.end(await register.metrics());
});

// Usage in business logic
async function completeOrder(order: Order) {
  await saveOrder(order);

  businessMetrics.ordersTotal
    .labels('completed', order.paymentMethod)
    .inc();

  businessMetrics.orderValue.observe(order.total);
}

3. Distributed Tracing with OpenTelemetry

import { NodeSDK } from '@opentelemetry/sdk-node';
import { getNodeAutoInstrumentations } from '@opentelemetry/auto-instrumentations-node';
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http';
import { Resource } from '@opentelemetry/resources';
import { SemanticResourceAttributes } from '@opentelemetry/semantic-conventions';
import { trace, SpanStatusCode, context } from '@opentelemetry/api';

// Initialize OpenTelemetry
const sdk = new NodeSDK({
  resource: new Resource({
    [SemanticResourceAttributes.SERVICE_NAME]: process.env.SERVICE_NAME,
    [SemanticResourceAttributes.SERVICE_VERSION]: process.env.APP_VERSION,
    [SemanticResourceAttributes.DEPLOYMENT_ENVIRONMENT]: process.env.NODE_ENV,
  }),
  traceExporter: new OTLPTraceExporter({
    url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT,
  }),
  instrumentations: [
    getNodeAutoInstrumentations({
      '@opentelemetry/instrumentation-http': {
        ignoreIncomingRequestHook: (req) => req.url === '/health',
      },
      '@opentelemetry/instrumentation-express': {},
      '@opentelemetry/instrumentation-pg': {},
      '@opentelemetry/instrumentation-redis': {},
    }),
  ],
});

sdk.start();

// Custom spans
const tracer = trace.getTracer('my-service');

async function processOrder(orderId: string): Promise<void> {
  return tracer.startActiveSpan('processOrder', async (span) => {
    try {
      span.setAttributes({
        'order.id': orderId,
      });

      // Child span for validation
      await tracer.startActiveSpan('validateOrder', async (validationSpan) => {
        const isValid = await validateOrder(orderId);
        validationSpan.setAttributes({ 'order.valid': isValid });
        validationSpan.end();
      });

      // Child span for payment
      await tracer.startActiveSpan('processPayment', async (paymentSpan) => {
        const payment = await chargeCard(orderId);
        paymentSpan.setAttributes({
          'payment.id': payment.id,
          'payment.amount': payment.amount,
        });
        paymentSpan.end();
      });

      span.setStatus({ code: SpanStatusCode.OK });
    } catch (error) {
      span.setStatus({
        code: SpanStatusCode.ERROR,
        message: error.message,
      });
      span.recordException(error);
      throw error;
    } finally {
      span.end();
    }
  });
}

// Propagate context across services
async function callExternalService(endpoint: string, data: any) {
  return tracer.startActiveSpan('externalServiceCall', async (span) => {
    span.setAttributes({
      'http.url': endpoint,
      'http.method': 'POST',
    });

    // Inject trace context into headers
    const headers: Record<string, string> = {};
    const propagator = trace.getTracerProvider();

    const response = await fetch(endpoint, {
      method: 'POST',
      headers: {
        'Content-Type': 'application/json',
        ...headers,
      },
      body: JSON.stringify(data),
    });

    span.setAttributes({
      'http.status_code': response.status,
    });

    span.end();
    return response;
  });
}

4. Error Tracking

import * as Sentry from '@sentry/node';
import { ProfilingIntegration } from '@sentry/profiling-node';

// Initialize Sentry
Sentry.init({
  dsn: process.env.SENTRY_DSN,
  environment: process.env.NODE_ENV,
  release: process.env.APP_VERSION,
  integrations: [
    new ProfilingIntegration(),
  ],
  tracesSampleRate: process.env.NODE_ENV === 'production' ? 0.1 : 1.0,
  profilesSampleRate: 0.1,
  beforeSend(event, hint) {
    // Filter out known errors
    const error = hint.originalException as Error;
    if (error?.message?.includes('ECONNRESET')) {
      return null;
    }
    return event;
  },
});

// Error handler middleware
app.use(Sentry.Handlers.errorHandler({
  shouldHandleError(error) {
    // Only report 5xx errors
    return error.status >= 500;
  },
}));

// Custom error reporting
function reportError(error: Error, context?: Record<string, any>) {
  Sentry.withScope((scope) => {
    if (context) {
      scope.setExtras(context);
    }
    scope.setTags({
      component: context?.component || 'unknown',
    });
    Sentry.captureException(error);
  });

  // Also log
  logError(error, context);
}

// Capture user context
app.use((req, res, next) => {
  if (req.user) {
    Sentry.setUser({
      id: req.user.id,
      email: req.user.email,
    });
  }
  next();
});

5. Alerting Configuration

# prometheus/alerts.yml
groups:
  - name: application
    rules:
      # High error rate
      - alert: HighErrorRate
        expr: |
          sum(rate(http_requests_total{status_code=~"5.."}[5m]))
          /
          sum(rate(http_requests_total[5m]))
          > 0.05
        for: 5m
        labels:
          severity: critical
        annotations:
          summary: High error rate detected
          description: Error rate is {{ $value | humanizePercentage }}

      # Slow response time
      - alert: SlowResponseTime
        expr: |
          histogram_quantile(0.95,
            sum(rate(http_request_duration_seconds_bucket[5m])) by (le)
          ) > 2
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: Slow response times detected
          description: 95th percentile latency is {{ $value }}s

      # High memory usage
      - alert: HighMemoryUsage
        expr: |
          process_resident_memory_bytes / 1024 / 1024 / 1024 > 2
        for: 10m
        labels:
          severity: warning
        annotations:
          summary: High memory usage
          description: Memory usage is {{ $value | humanize }}GB

      # Service down
      - alert: ServiceDown
        expr: up == 0
        for: 1m
        labels:
          severity: critical
        annotations:
          summary: Service is down
          description: "{{ $labels.instance }} has been down for more than 1 minute"

  - name: business
    rules:
      # Low order volume
      - alert: LowOrderVolume
        expr: |
          sum(rate(orders_total{status="completed"}[1h])) < 10
        for: 30m
        labels:
          severity: warning
        annotations:
          summary: Low order volume
          description: Order rate is {{ $value }} orders/hour

      # Payment failures
      - alert: HighPaymentFailureRate
        expr: |
          sum(rate(orders_total{status="payment_failed"}[15m]))
          /
          sum(rate(orders_total[15m]))
          > 0.1
        for: 5m
        labels:
          severity: critical
        annotations:
          summary: High payment failure rate
          description: Payment failure rate is {{ $value | humanizePercentage }}

6. Health Checks

import { HealthCheck, HealthCheckResult, HttpHealthIndicator, DiskHealthIndicator, MemoryHealthIndicator } from '@nestjs/terminus';

interface HealthStatus {
  status: 'healthy' | 'degraded' | 'unhealthy';
  checks: Record<string, CheckResult>;
  timestamp: string;
  version: string;
}

interface CheckResult {
  status: 'pass' | 'fail' | 'warn';
  duration: number;
  message?: string;
}

async function healthCheck(): Promise<HealthStatus> {
  const checks: Record<string, CheckResult> = {};
  let overallStatus: HealthStatus['status'] = 'healthy';

  // Database check
  checks.database = await checkDatabase();
  if (checks.database.status === 'fail') overallStatus = 'unhealthy';

  // Redis check
  checks.redis = await checkRedis();
  if (checks.redis.status === 'fail') overallStatus = 'unhealthy';

  // External API check
  checks.externalApi = await checkExternalApi();
  if (checks.externalApi.status === 'warn') {
    overallStatus = overallStatus === 'healthy' ? 'degraded' : overallStatus;
  }

  // Memory check
  checks.memory = checkMemory();
  if (checks.memory.status === 'warn') {
    overallStatus = overallStatus === 'healthy' ? 'degraded' : overallStatus;
  }

  return {
    status: overallStatus,
    checks,
    timestamp: new Date().toISOString(),
    version: process.env.APP_VERSION || 'unknown',
  };
}

async function checkDatabase(): Promise<CheckResult> {
  const start = Date.now();
  try {
    await db.$queryRaw`SELECT 1`;
    return {
      status: 'pass',
      duration: Date.now() - start,
    };
  } catch (error) {
    return {
      status: 'fail',
      duration: Date.now() - start,
      message: error.message,
    };
  }
}

// Endpoints
app.get('/health', async (req, res) => {
  const health = await healthCheck();
  const statusCode = health.status === 'healthy' ? 200 :
                     health.status === 'degraded' ? 200 : 503;
  res.status(statusCode).json(health);
});

app.get('/health/live', (req, res) => {
  res.status(200).json({ status: 'alive' });
});

app.get('/health/ready', async (req, res) => {
  const health = await healthCheck();
  res.status(health.status === 'unhealthy' ? 503 : 200).json(health);
});

Use Cases

1. Debugging Production Issues

// Correlation ID for request tracing
const correlationId = req.headers['x-correlation-id'] || uuid();
req.log = logger.child({ correlationId });

// Log at decision points
req.log.info({ userId, action: 'checkout.started' });
// ... process ...
req.log.info({ orderId, action: 'order.created' });

2. Performance Monitoring

// Track key business metrics
businessMetrics.apiLatency.observe(duration);
businessMetrics.cacheHitRate.set(hits / total);

Best Practices

Do's

  • Use correlation IDs - Trace requests across services
  • Log at appropriate levels - Don't log everything as error
  • Set meaningful alerts - Alert on symptoms, not causes
  • Create actionable dashboards - Show what matters
  • Implement log rotation - Prevent disk exhaustion
  • Sample high-volume traces - Balance detail vs cost

Don'ts

  • Don't log sensitive data
  • Don't ignore alert fatigue
  • Don't skip structured logging
  • Don't forget log levels
  • Don't alert on every error
  • Don't neglect log retention policies

Related Skills

  • kubernetes - Container orchestration
  • backend-development - Application code
  • performance-profiling - Performance analysis

Reference Resources