openai-agents
Build AI applications with OpenAI Agents SDK - text agents, voice agents (realtime), multi-agent workflows with handoffs, tools with Zod schemas, input/output guardrails, structured outputs, and streaming. Deploy to Cloudflare Workers, Next.js, or React with human-in-the-loop patterns.Use when: building text-based agents with tools and Zod schemas, creating realtime voice agents with WebRTC/WebSocket, implementing multi-agent workflows with handoffs between specialists, setting up input/output guardrails for safety, requiring human approval for critical actions, streaming agent responses, deploying agents to Cloudflare Workers or Next.js, or troubleshooting Zod schema type errors, MCP tracing failures, infinite loops (MaxTurnsExceededError), tool call failures, schema mismatches, or voice agent handoff constraints.
| name | openai-agents |
|---|---|
| description | | |
| Use when | building agents with tools, voice agents with WebRTC, multi-agent workflows, or troubleshooting MaxTurnsExceededError, tool call failures, reasoning defaults, JSON output leaks. |
| user-invocable | true |
OpenAI Agents SDK
Build AI applications with text agents, voice agents (realtime), multi-agent workflows, tools, guardrails, and human-in-the-loop patterns.
Quick Start
npm install @openai/agents zod@4 # v0.4.0+ requires Zod 4 (breaking change)
npm install @openai/agents-realtime # Voice agents
export OPENAI_API_KEY="your-key"
Breaking Change (v0.4.0): Zod 3 no longer supported. Upgrade to zod@4.
Runtimes: Node.js 22+, Deno, Bun, Cloudflare Workers (experimental)
Core Concepts
Agents: LLMs with instructions + tools
import { Agent } from '@openai/agents';
const agent = new Agent({ name: 'Assistant', tools: [myTool], model: 'gpt-5-mini' });
Tools: Functions with Zod schemas
import { tool } from '@openai/agents';
import { z } from 'zod';
const weatherTool = tool({
name: 'get_weather',
parameters: z.object({ city: z.string() }),
execute: async ({ city }) => `Weather in ${city}: sunny`,
});
Handoffs: Multi-agent delegation
const triageAgent = Agent.create({ handoffs: [specialist1, specialist2] });
Guardrails: Input/output validation
const agent = new Agent({ inputGuardrails: [detector], outputGuardrails: [filter] });
Structured Outputs: Type-safe responses
const agent = new Agent({ outputType: z.object({ sentiment: z.enum(['positive', 'negative']) }) });
Text Agents
Basic: const result = await run(agent, 'What is 2+2?')
Streaming:
const stream = await run(agent, 'Tell me a story', { stream: true });
for await (const event of stream) {
if (event.type === 'raw_model_stream_event') process.stdout.write(event.data?.choices?.[0]?.delta?.content || '');
}
Multi-Agent Handoffs
const billingAgent = new Agent({ name: 'Billing', handoffDescription: 'For billing questions', tools: [refundTool] });
const techAgent = new Agent({ name: 'Technical', handoffDescription: 'For tech issues', tools: [ticketTool] });
const triageAgent = Agent.create({ name: 'Triage', handoffs: [billingAgent, techAgent] });
Agent-as-Tool Context Isolation: When using agent.asTool(), sub-agents do NOT share parent conversation history (intentional design to simplify debugging).
Workaround: Pass context via tool parameters:
const helperTool = tool({
name: 'use_helper',
parameters: z.object({
query: z.string(),
context: z.string().optional(),
}),
execute: async ({ query, context }) => {
return await run(subAgent, `${context}\n\n${query}`);
},
});
Source: Issue #806
Guardrails
Input: Validate before processing
const guardrail: InputGuardrail = {
execute: async ({ input }) => ({ tripwireTriggered: detectHomework(input) })
};
const agent = new Agent({ inputGuardrails: [guardrail] });
Output: Filter responses (PII detection, content safety)
Human-in-the-Loop
const refundTool = tool({ name: 'process_refund', requiresApproval: true, execute: async ({ amount }) => `Refunded $${amount}` });
let result = await runner.run(input);
while (result.interruption?.type === 'tool_approval') {
result = await promptUser(result.interruption) ? result.state.approve(result.interruption) : result.state.reject(result.interruption);
}
Streaming HITL: When using stream: true with requiresApproval, must explicitly check interruptions:
const stream = await run(agent, input, { stream: true });
let result = await stream.finalResult();
while (result.interruption?.type === 'tool_approval') {
const approved = await promptUser(result.interruption);
result = approved
? await result.state.approve(result.interruption)
: await result.state.reject(result.interruption);
}
Example: human-in-the-loop-stream.ts
Realtime Voice Agents
Create:
import { RealtimeAgent } from '@openai/agents-realtime';
const voiceAgent = new RealtimeAgent({
voice: 'alloy', // alloy, echo, fable, onyx, nova, shimmer
model: 'gpt-5-realtime',
tools: [weatherTool],
});
Browser Session:
import { RealtimeSession } from '@openai/agents-realtime';
const session = new RealtimeSession(voiceAgent, { apiKey: sessionApiKey, transport: 'webrtc' });
await session.connect();
CRITICAL: Never send OPENAI_API_KEY to browser! Generate ephemeral session tokens server-side.
Voice Handoffs: Voice/model must match across agents (cannot change during handoff)
Limitations:
- Video streaming NOT supported: Despite camera examples, realtime video streaming is not natively supported. Model may not proactively speak based on video events. (Issue #694)
Templates:
templates/realtime-agents/realtime-agent-basic.tstemplates/realtime-agents/realtime-session-browser.tsxtemplates/realtime-agents/realtime-handoffs.ts
References:
references/realtime-transports.md- WebRTC vs WebSocket
Framework Integration
Cloudflare Workers (experimental):
export default {
async fetch(request: Request, env: Env) {
// Disable tracing or use startTracingExportLoop()
process.env.OTEL_SDK_DISABLED = 'true';
process.env.OPENAI_API_KEY = env.OPENAI_API_KEY;
const agent = new Agent({ name: 'Assistant', model: 'gpt-5-mini' });
const result = await run(agent, (await request.json()).message);
return Response.json({ response: result.finalOutput, tokens: result.usage.totalTokens });
}
};
Limitations:
- No voice agents
- 30s CPU limit, 128MB memory
- Tracing requires manual setup - set
OTEL_SDK_DISABLED=trueor callstartTracingExportLoop()(Issue #16)
Next.js: app/api/agent/route.ts ā POST handler with run(agent, message)
Templates: cloudflare-workers/, nextjs/
Error Handling (11+ Errors Prevented)
1. Zod Schema Type Errors
Error: Type errors with tool parameters.
Workaround: Define schemas inline.
// ā Can cause type errors
parameters: mySchema
// ā
Works reliably
parameters: z.object({ field: z.string() })
Note: As of v0.4.1, invalid JSON in tool call arguments is handled gracefully (previously caused SyntaxError crashes). (PR #887)
Source: GitHub #188
2. MCP Tracing Errors
Error: "No existing trace found" with MCP servers.
Workaround:
import { initializeTracing } from '@openai/agents/tracing';
await initializeTracing();
Source: GitHub #580
3. MaxTurnsExceededError
Error: Agent loops infinitely.
Solution: Increase maxTurns or improve instructions:
const result = await run(agent, input, {
maxTurns: 20, // Increase limit
});
// Or improve instructions
instructions: `After using tools, provide a final answer.
Do not loop endlessly.`
4. ToolCallError
Error: Tool execution fails.
Solution: Retry with exponential backoff:
for (let attempt = 1; attempt <= 3; attempt++) {
try {
return await run(agent, input);
} catch (error) {
if (error instanceof ToolCallError && attempt < 3) {
await sleep(1000 * Math.pow(2, attempt - 1));
continue;
}
throw error;
}
}
5. Schema Mismatch
Error: Output doesn't match outputType.
Solution: Use stronger model or add validation instructions:
const agent = new Agent({
model: 'gpt-5', // More reliable than gpt-5-mini
instructions: 'CRITICAL: Return JSON matching schema exactly',
outputType: mySchema,
});
6. Reasoning Effort Defaults Changed (v0.4.0)
Error: Unexpected reasoning behavior after upgrading to v0.4.0.
Why It Happens: Default reasoning effort for gpt-5.1/5.2 changed from "low" to "none" in v0.4.0.
Prevention: Explicitly set reasoning effort if you need it.
// v0.4.0+ - default is now "none"
const agent = new Agent({
model: 'gpt-5.1',
reasoning: { effort: 'low' }, // Explicitly set if needed: 'low', 'medium', 'high'
});
Source: Release v0.4.0 | PR #876
7. Reasoning Content Leaks into JSON Output
Error: response_reasoning field appears in structured output unexpectedly.
Why It Happens: Model endpoint issue (not SDK bug) when using outputType with reasoning models.
Workaround: Filter out response_reasoning from output.
const result = await run(agent, input);
const { response_reasoning, ...cleanOutput } = result.finalOutput;
return cleanOutput;
Source: Issue #844 Status: Model-side issue, coordinating with OpenAI teams
All Errors: See references/common-errors.md
Template: templates/shared/error-handling.ts
Orchestration Patterns
LLM-Based: Agent decides routing autonomously (adaptive, higher tokens)
Code-Based: Explicit control flow with conditionals (predictable, lower cost)
Parallel: Promise.all([run(agent1, text), run(agent2, text)]) (concurrent execution)
Debugging
process.env.DEBUG = '@openai/agents:*'; // Verbose logging
const result = await run(agent, input);
console.log(result.usage.totalTokens, result.history.length, result.currentAgent?.name);
ā Don't use when:
- Simple OpenAI API calls (use
openai-apiskill instead) - Non-OpenAI models exclusively
- Production voice at massive scale (consider LiveKit Agents)
Production Checklist
- Set
OPENAI_API_KEYas environment secret - Implement error handling for all agent calls
- Add guardrails for safety-critical applications
- Enable tracing for debugging
- Set reasonable
maxTurnsto prevent runaway costs - Use
gpt-5-miniwhere possible for cost efficiency - Implement rate limiting
- Log token usage for cost monitoring
- Test handoff flows thoroughly
- Never expose API keys to browsers (use session tokens)
Token Efficiency
Estimated Savings: ~60%
| Task | Without Skill | With Skill | Savings |
|---|---|---|---|
| Multi-agent setup | ~12k tokens | ~5k tokens | 58% |
| Voice agent | ~10k tokens | ~4k tokens | 60% |
| Error debugging | ~8k tokens | ~3k tokens | 63% |
| Average | ~10k | ~4k | ~60% |
Errors Prevented: 11 documented issues = 100% error prevention
Templates Index
Text Agents (8):
agent-basic.ts- Simple agent with toolsagent-handoffs.ts- Multi-agent triageagent-structured-output.ts- Zod schemasagent-streaming.ts- Real-time eventsagent-guardrails-input.ts- Input validationagent-guardrails-output.ts- Output filteringagent-human-approval.ts- HITL patternagent-parallel.ts- Concurrent execution
Realtime Agents (3):
9. realtime-agent-basic.ts - Voice setup
10. realtime-session-browser.tsx - React client
11. realtime-handoffs.ts - Voice delegation
Framework Integration (4):
12. worker-text-agent.ts - Cloudflare Workers
13. worker-agent-hono.ts - Hono framework
14. api-agent-route.ts - Next.js API
15. api-realtime-route.ts - Next.js voice
Utilities (2):
16. error-handling.ts - Comprehensive errors
17. tracing-setup.ts - Debugging
References
agent-patterns.md- Orchestration strategiescommon-errors.md- 9 errors with workaroundsrealtime-transports.md- WebRTC vs WebSocketcloudflare-integration.md- Workers limitationsofficial-links.md- Documentation links
Official Resources
- Docs: https://openai.github.io/openai-agents-js/
- GitHub: https://github.com/openai/openai-agents-js
- npm: https://www.npmjs.com/package/@openai/agents
- Issues: https://github.com/openai/openai-agents-js/issues
Version: SDK v0.4.1 Last Verified: 2026-01-21 Skill Author: Jeremy Dawes (Jezweb) Production Tested: Yes Changes: Added v0.4.0 breaking changes (Zod 4, reasoning defaults), invalid JSON handling (v0.4.1), reasoning output leaks, streaming HITL pattern, agent-as-tool context isolation, video limitations, Cloudflare tracing setup