polars
Lightning-fast DataFrame library written in Rust for high-performance data manipulation and analysis. Use when user wants blazing fast data transformations, working with large datasets, lazy evaluation pipelines, or needs better performance than pandas. Ideal for ETL, data wrangling, aggregations, joins, and reading/writing CSV, Parquet, JSON files.
When & Why to Use This Skill
This Claude skill provides expert assistance for Polars, a lightning-fast DataFrame library built on Rust and Apache Arrow. It enables high-performance data manipulation, complex ETL workflows, and memory-efficient analysis. By leveraging lazy evaluation and a powerful expression API, this skill helps users process massive datasets significantly faster than traditional tools like pandas, making it an essential companion for modern data engineering and analysis.
Use Cases
- High-Performance ETL Pipelines: Designing and optimizing data transformation workflows that handle millions of rows with multi-threaded execution.
- Pandas to Polars Migration: Converting legacy pandas scripts into optimized Polars expressions to achieve 10-100x speed improvements and reduced memory usage.
- Large-Scale Data Wrangling: Performing complex joins, filtering, and aggregations on datasets that exceed available RAM using Polars' streaming capabilities.
- Optimized File I/O: Implementing rapid read/write operations for Parquet, CSV, and JSON formats with automatic query optimization and predicate pushdown.
| name | polars |
|---|---|
| description | "Fast DataFrame library (Apache Arrow). Select, filter, group_by, joins, lazy evaluation, CSV/Parquet I/O, expression API, for high-performance data analysis workflows." |
Polars
Overview
Polars is a lightning-fast DataFrame library for Python and Rust built on Apache Arrow. Work with Polars' expression-based API, lazy evaluation framework, and high-performance data manipulation capabilities for efficient data processing, pandas migration, and data pipeline optimization.
Quick Start
Installation and Basic Usage
Install Polars:
uv pip install polars
Basic DataFrame creation and operations:
import polars as pl
# Create DataFrame
df = pl.DataFrame({
"name": ["Alice", "Bob", "Charlie"],
"age": [25, 30, 35],
"city": ["NY", "LA", "SF"]
})
# Select columns
df.select("name", "age")
# Filter rows
df.filter(pl.col("age") > 25)
# Add computed columns
df.with_columns(
age_plus_10=pl.col("age") + 10
)
Core Concepts
Expressions
Expressions are the fundamental building blocks of Polars operations. They describe transformations on data and can be composed, reused, and optimized.
Key principles:
- Use
pl.col("column_name")to reference columns - Chain methods to build complex transformations
- Expressions are lazy and only execute within contexts (select, with_columns, filter, group_by)
Example:
# Expression-based computation
df.select(
pl.col("name"),
(pl.col("age") * 12).alias("age_in_months")
)
Lazy vs Eager Evaluation
Eager (DataFrame): Operations execute immediately
df = pl.read_csv("file.csv") # Reads immediately
result = df.filter(pl.col("age") > 25) # Executes immediately
Lazy (LazyFrame): Operations build a query plan, optimized before execution
lf = pl.scan_csv("file.csv") # Doesn't read yet
result = lf.filter(pl.col("age") > 25).select("name", "age")
df = result.collect() # Now executes optimized query
When to use lazy:
- Working with large datasets
- Complex query pipelines
- When only some columns/rows are needed
- Performance is critical
Benefits of lazy evaluation:
- Automatic query optimization
- Predicate pushdown
- Projection pushdown
- Parallel execution
For detailed concepts, load references/core_concepts.md.
Common Operations
Select
Select and manipulate columns:
# Select specific columns
df.select("name", "age")
# Select with expressions
df.select(
pl.col("name"),
(pl.col("age") * 2).alias("double_age")
)
# Select all columns matching a pattern
df.select(pl.col("^.*_id$"))
Filter
Filter rows by conditions:
# Single condition
df.filter(pl.col("age") > 25)
# Multiple conditions (cleaner than using &)
df.filter(
pl.col("age") > 25,
pl.col("city") == "NY"
)
# Complex conditions
df.filter(
(pl.col("age") > 25) | (pl.col("city") == "LA")
)
With Columns
Add or modify columns while preserving existing ones:
# Add new columns
df.with_columns(
age_plus_10=pl.col("age") + 10,
name_upper=pl.col("name").str.to_uppercase()
)
# Parallel computation (all columns computed in parallel)
df.with_columns(
pl.col("value") * 10,
pl.col("value") * 100,
)
Group By and Aggregations
Group data and compute aggregations:
# Basic grouping
df.group_by("city").agg(
pl.col("age").mean().alias("avg_age"),
pl.len().alias("count")
)
# Multiple group keys
df.group_by("city", "department").agg(
pl.col("salary").sum()
)
# Conditional aggregations
df.group_by("city").agg(
(pl.col("age") > 30).sum().alias("over_30")
)
For detailed operation patterns, load references/operations.md.
Aggregations and Window Functions
Aggregation Functions
Common aggregations within group_by context:
pl.len()- count rowspl.col("x").sum()- sum valuespl.col("x").mean()- averagepl.col("x").min()/pl.col("x").max()- extremespl.first()/pl.last()- first/last values
Window Functions with over()
Apply aggregations while preserving row count:
# Add group statistics to each row
df.with_columns(
avg_age_by_city=pl.col("age").mean().over("city"),
rank_in_city=pl.col("salary").rank().over("city")
)
# Multiple grouping columns
df.with_columns(
group_avg=pl.col("value").mean().over("category", "region")
)
Mapping strategies:
group_to_rows(default): Preserves original row orderexplode: Faster but groups rows togetherjoin: Creates list columns
Data I/O
Supported Formats
Polars supports reading and writing:
- CSV, Parquet, JSON, Excel
- Databases (via connectors)
- Cloud storage (S3, Azure, GCS)
- Google BigQuery
- Multiple/partitioned files
Common I/O Operations
CSV:
# Eager
df = pl.read_csv("file.csv")
df.write_csv("output.csv")
# Lazy (preferred for large files)
lf = pl.scan_csv("file.csv")
result = lf.filter(...).select(...).collect()
Parquet (recommended for performance):
df = pl.read_parquet("file.parquet")
df.write_parquet("output.parquet")
JSON:
df = pl.read_json("file.json")
df.write_json("output.json")
For comprehensive I/O documentation, load references/io_guide.md.
Transformations
Joins
Combine DataFrames:
# Inner join
df1.join(df2, on="id", how="inner")
# Left join
df1.join(df2, on="id", how="left")
# Join on different column names
df1.join(df2, left_on="user_id", right_on="id")
Concatenation
Stack DataFrames:
# Vertical (stack rows)
pl.concat([df1, df2], how="vertical")
# Horizontal (add columns)
pl.concat([df1, df2], how="horizontal")
# Diagonal (union with different schemas)
pl.concat([df1, df2], how="diagonal")
Pivot and Unpivot
Reshape data:
# Pivot (wide format)
df.pivot(values="sales", index="date", columns="product")
# Unpivot (long format)
df.unpivot(index="id", on=["col1", "col2"])
For detailed transformation examples, load references/transformations.md.
Pandas Migration
Polars offers significant performance improvements over pandas with a cleaner API. Key differences:
Conceptual Differences
- No index: Polars uses integer positions only
- Strict typing: No silent type conversions
- Lazy evaluation: Available via LazyFrame
- Parallel by default: Operations parallelized automatically
Common Operation Mappings
| Operation | Pandas | Polars |
|---|---|---|
| Select column | df["col"] |
df.select("col") |
| Filter | df[df["col"] > 10] |
df.filter(pl.col("col") > 10) |
| Add column | df.assign(x=...) |
df.with_columns(x=...) |
| Group by | df.groupby("col").agg(...) |
df.group_by("col").agg(...) |
| Window | df.groupby("col").transform(...) |
df.with_columns(...).over("col") |
Key Syntax Patterns
Pandas sequential (slow):
df.assign(
col_a=lambda df_: df_.value * 10,
col_b=lambda df_: df_.value * 100
)
Polars parallel (fast):
df.with_columns(
col_a=pl.col("value") * 10,
col_b=pl.col("value") * 100,
)
For comprehensive migration guide, load references/pandas_migration.md.
Best Practices
Performance Optimization
Use lazy evaluation for large datasets:
lf = pl.scan_csv("large.csv") # Don't use read_csv result = lf.filter(...).select(...).collect()Avoid Python functions in hot paths:
- Stay within expression API for parallelization
- Use
.map_elements()only when necessary - Prefer native Polars operations
Use streaming for very large data:
lf.collect(streaming=True)Select only needed columns early:
# Good: Select columns early lf.select("col1", "col2").filter(...) # Bad: Filter on all columns first lf.filter(...).select("col1", "col2")Use appropriate data types:
- Categorical for low-cardinality strings
- Appropriate integer sizes (i32 vs i64)
- Date types for temporal data
Expression Patterns
Conditional operations:
pl.when(condition).then(value).otherwise(other_value)
Column operations across multiple columns:
df.select(pl.col("^.*_value$") * 2) # Regex pattern
Null handling:
pl.col("x").fill_null(0)
pl.col("x").is_null()
pl.col("x").drop_nulls()
For additional best practices and patterns, load references/best_practices.md.
Resources
This skill includes comprehensive reference documentation:
references/
core_concepts.md- Detailed explanations of expressions, lazy evaluation, and type systemoperations.md- Comprehensive guide to all common operations with examplespandas_migration.md- Complete migration guide from pandas to Polarsio_guide.md- Data I/O operations for all supported formatstransformations.md- Joins, concatenation, pivots, and reshaping operationsbest_practices.md- Performance optimization tips and common patterns
Load these references as needed when users require detailed information about specific topics.