rag-implementation

wshobson's avatarfrom wshobson

Build Retrieval-Augmented Generation (RAG) systems for LLM applications with vector databases and semantic search. Use when implementing knowledge-grounded AI, building document Q&A systems, or integrating LLMs with external knowledge bases.

24.2kstars🔀2.7kforks📁View on GitHub🕐Updated Jan 1, 2026

When & Why to Use This Skill

This Claude skill provides a comprehensive framework for building Retrieval-Augmented Generation (RAG) systems, enabling LLMs to access and reason over external, proprietary knowledge bases. It covers the entire technical stack—from vector database integration (Pinecone, Weaviate, pgvector) and embedding optimization to advanced retrieval strategies like Hybrid Search, Reranking, and HyDE. By implementing these patterns, developers can significantly reduce hallucinations and build high-precision, knowledge-grounded AI applications.

Use Cases

  • Enterprise Knowledge Management: Building internal Q&A systems that allow employees to query proprietary documents, wikis, and SOPs with high accuracy.
  • Factual AI Chatbots: Developing customer-facing assistants that provide real-time, grounded information with verifiable source citations to minimize misinformation.
  • Technical Documentation Assistants: Creating specialized tools for developers to navigate complex codebases and API documentation using semantic search.
  • Research and Data Synthesis: Automating the retrieval and summarization of information from vast document repositories for academic or market research.
  • Context-Aware Agentic Workflows: Using LangGraph and RAG to provide AI agents with long-term memory and relevant context for multi-step task execution.
namerag-implementation
descriptionBuild Retrieval-Augmented Generation (RAG) systems for LLM applications with vector databases and semantic search. Use when implementing knowledge-grounded AI, building document Q&A systems, or integrating LLMs with external knowledge bases.

RAG Implementation

Master Retrieval-Augmented Generation (RAG) to build LLM applications that provide accurate, grounded responses using external knowledge sources.

When to Use This Skill

  • Building Q&A systems over proprietary documents
  • Creating chatbots with current, factual information
  • Implementing semantic search with natural language queries
  • Reducing hallucinations with grounded responses
  • Enabling LLMs to access domain-specific knowledge
  • Building documentation assistants
  • Creating research tools with source citation

Core Components

1. Vector Databases

Purpose: Store and retrieve document embeddings efficiently

Options:

  • Pinecone: Managed, scalable, serverless
  • Weaviate: Open-source, hybrid search, GraphQL
  • Milvus: High performance, on-premise
  • Chroma: Lightweight, easy to use, local development
  • Qdrant: Fast, filtered search, Rust-based
  • pgvector: PostgreSQL extension, SQL integration

2. Embeddings

Purpose: Convert text to numerical vectors for similarity search

Models (2026):

Model Dimensions Best For
voyage-3-large 1024 Claude apps (Anthropic recommended)
voyage-code-3 1024 Code search
text-embedding-3-large 3072 OpenAI apps, high accuracy
text-embedding-3-small 1536 OpenAI apps, cost-effective
bge-large-en-v1.5 1024 Open source, local deployment
multilingual-e5-large 1024 Multi-language support

3. Retrieval Strategies

Approaches:

  • Dense Retrieval: Semantic similarity via embeddings
  • Sparse Retrieval: Keyword matching (BM25, TF-IDF)
  • Hybrid Search: Combine dense + sparse with weighted fusion
  • Multi-Query: Generate multiple query variations
  • HyDE: Generate hypothetical documents for better retrieval

4. Reranking

Purpose: Improve retrieval quality by reordering results

Methods:

  • Cross-Encoders: BERT-based reranking (ms-marco-MiniLM)
  • Cohere Rerank: API-based reranking
  • Maximal Marginal Relevance (MMR): Diversity + relevance
  • LLM-based: Use LLM to score relevance

Quick Start with LangGraph

from langgraph.graph import StateGraph, START, END
from langchain_anthropic import ChatAnthropic
from langchain_voyageai import VoyageAIEmbeddings
from langchain_pinecone import PineconeVectorStore
from langchain_core.documents import Document
from langchain_core.prompts import ChatPromptTemplate
from langchain_text_splitters import RecursiveCharacterTextSplitter
from typing import TypedDict, Annotated

class RAGState(TypedDict):
    question: str
    context: list[Document]
    answer: str

# Initialize components
llm = ChatAnthropic(model="claude-sonnet-4-5")
embeddings = VoyageAIEmbeddings(model="voyage-3-large")
vectorstore = PineconeVectorStore(index_name="docs", embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})

# RAG prompt
rag_prompt = ChatPromptTemplate.from_template(
    """Answer based on the context below. If you cannot answer, say so.

    Context:
    {context}

    Question: {question}

    Answer:"""
)

async def retrieve(state: RAGState) -> RAGState:
    """Retrieve relevant documents."""
    docs = await retriever.ainvoke(state["question"])
    return {"context": docs}

async def generate(state: RAGState) -> RAGState:
    """Generate answer from context."""
    context_text = "\n\n".join(doc.page_content for doc in state["context"])
    messages = rag_prompt.format_messages(
        context=context_text,
        question=state["question"]
    )
    response = await llm.ainvoke(messages)
    return {"answer": response.content}

# Build RAG graph
builder = StateGraph(RAGState)
builder.add_node("retrieve", retrieve)
builder.add_node("generate", generate)
builder.add_edge(START, "retrieve")
builder.add_edge("retrieve", "generate")
builder.add_edge("generate", END)

rag_chain = builder.compile()

# Use
result = await rag_chain.ainvoke({"question": "What are the main features?"})
print(result["answer"])

Advanced RAG Patterns

Pattern 1: Hybrid Search with RRF

from langchain_community.retrievers import BM25Retriever
from langchain.retrievers import EnsembleRetriever

# Sparse retriever (BM25 for keyword matching)
bm25_retriever = BM25Retriever.from_documents(documents)
bm25_retriever.k = 10

# Dense retriever (embeddings for semantic search)
dense_retriever = vectorstore.as_retriever(search_kwargs={"k": 10})

# Combine with Reciprocal Rank Fusion weights
ensemble_retriever = EnsembleRetriever(
    retrievers=[bm25_retriever, dense_retriever],
    weights=[0.3, 0.7]  # 30% keyword, 70% semantic
)

Pattern 2: Multi-Query Retrieval

from langchain.retrievers.multi_query import MultiQueryRetriever

# Generate multiple query perspectives for better recall
multi_query_retriever = MultiQueryRetriever.from_llm(
    retriever=vectorstore.as_retriever(search_kwargs={"k": 5}),
    llm=llm
)

# Single query → multiple variations → combined results
results = await multi_query_retriever.ainvoke("What is the main topic?")

Pattern 3: Contextual Compression

from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor

# Compressor extracts only relevant portions
compressor = LLMChainExtractor.from_llm(llm)

compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor,
    base_retriever=vectorstore.as_retriever(search_kwargs={"k": 10})
)

# Returns only relevant parts of documents
compressed_docs = await compression_retriever.ainvoke("specific query")

Pattern 4: Parent Document Retriever

from langchain.retrievers import ParentDocumentRetriever
from langchain.storage import InMemoryStore
from langchain_text_splitters import RecursiveCharacterTextSplitter

# Small chunks for precise retrieval, large chunks for context
child_splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=50)
parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)

# Store for parent documents
docstore = InMemoryStore()

parent_retriever = ParentDocumentRetriever(
    vectorstore=vectorstore,
    docstore=docstore,
    child_splitter=child_splitter,
    parent_splitter=parent_splitter
)

# Add documents (splits children, stores parents)
await parent_retriever.aadd_documents(documents)

# Retrieval returns parent documents with full context
results = await parent_retriever.ainvoke("query")

Pattern 5: HyDE (Hypothetical Document Embeddings)

from langchain_core.prompts import ChatPromptTemplate

class HyDEState(TypedDict):
    question: str
    hypothetical_doc: str
    context: list[Document]
    answer: str

hyde_prompt = ChatPromptTemplate.from_template(
    """Write a detailed passage that would answer this question:

    Question: {question}

    Passage:"""
)

async def generate_hypothetical(state: HyDEState) -> HyDEState:
    """Generate hypothetical document for better retrieval."""
    messages = hyde_prompt.format_messages(question=state["question"])
    response = await llm.ainvoke(messages)
    return {"hypothetical_doc": response.content}

async def retrieve_with_hyde(state: HyDEState) -> HyDEState:
    """Retrieve using hypothetical document."""
    # Use hypothetical doc for retrieval instead of original query
    docs = await retriever.ainvoke(state["hypothetical_doc"])
    return {"context": docs}

# Build HyDE RAG graph
builder = StateGraph(HyDEState)
builder.add_node("hypothetical", generate_hypothetical)
builder.add_node("retrieve", retrieve_with_hyde)
builder.add_node("generate", generate)
builder.add_edge(START, "hypothetical")
builder.add_edge("hypothetical", "retrieve")
builder.add_edge("retrieve", "generate")
builder.add_edge("generate", END)

hyde_rag = builder.compile()

Document Chunking Strategies

Recursive Character Text Splitter

from langchain_text_splitters import RecursiveCharacterTextSplitter

splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,
    chunk_overlap=200,
    length_function=len,
    separators=["\n\n", "\n", ". ", " ", ""]  # Try in order
)

chunks = splitter.split_documents(documents)

Token-Based Splitting

from langchain_text_splitters import TokenTextSplitter

splitter = TokenTextSplitter(
    chunk_size=512,
    chunk_overlap=50,
    encoding_name="cl100k_base"  # OpenAI tiktoken encoding
)

Semantic Chunking

from langchain_experimental.text_splitter import SemanticChunker

splitter = SemanticChunker(
    embeddings=embeddings,
    breakpoint_threshold_type="percentile",
    breakpoint_threshold_amount=95
)

Markdown Header Splitter

from langchain_text_splitters import MarkdownHeaderTextSplitter

headers_to_split_on = [
    ("#", "Header 1"),
    ("##", "Header 2"),
    ("###", "Header 3"),
]

splitter = MarkdownHeaderTextSplitter(
    headers_to_split_on=headers_to_split_on,
    strip_headers=False
)

Vector Store Configurations

Pinecone (Serverless)

from pinecone import Pinecone, ServerlessSpec
from langchain_pinecone import PineconeVectorStore

# Initialize Pinecone client
pc = Pinecone(api_key=os.environ["PINECONE_API_KEY"])

# Create index if needed
if "my-index" not in pc.list_indexes().names():
    pc.create_index(
        name="my-index",
        dimension=1024,  # voyage-3-large dimensions
        metric="cosine",
        spec=ServerlessSpec(cloud="aws", region="us-east-1")
    )

# Create vector store
index = pc.Index("my-index")
vectorstore = PineconeVectorStore(index=index, embedding=embeddings)

Weaviate

import weaviate
from langchain_weaviate import WeaviateVectorStore

client = weaviate.connect_to_local()  # or connect_to_weaviate_cloud()

vectorstore = WeaviateVectorStore(
    client=client,
    index_name="Documents",
    text_key="content",
    embedding=embeddings
)

Chroma (Local Development)

from langchain_chroma import Chroma

vectorstore = Chroma(
    collection_name="my_collection",
    embedding_function=embeddings,
    persist_directory="./chroma_db"
)

pgvector (PostgreSQL)

from langchain_postgres.vectorstores import PGVector

connection_string = "postgresql+psycopg://user:pass@localhost:5432/vectordb"

vectorstore = PGVector(
    embeddings=embeddings,
    collection_name="documents",
    connection=connection_string,
)

Retrieval Optimization

1. Metadata Filtering

from langchain_core.documents import Document

# Add metadata during indexing
docs_with_metadata = []
for doc in documents:
    doc.metadata.update({
        "source": doc.metadata.get("source", "unknown"),
        "category": determine_category(doc.page_content),
        "date": datetime.now().isoformat()
    })
    docs_with_metadata.append(doc)

# Filter during retrieval
results = await vectorstore.asimilarity_search(
    "query",
    filter={"category": "technical"},
    k=5
)

2. Maximal Marginal Relevance (MMR)

# Balance relevance with diversity
results = await vectorstore.amax_marginal_relevance_search(
    "query",
    k=5,
    fetch_k=20,  # Fetch 20, return top 5 diverse
    lambda_mult=0.5  # 0=max diversity, 1=max relevance
)

3. Reranking with Cross-Encoder

from sentence_transformers import CrossEncoder

reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')

async def retrieve_and_rerank(query: str, k: int = 5) -> list[Document]:
    # Get initial results
    candidates = await vectorstore.asimilarity_search(query, k=20)

    # Rerank
    pairs = [[query, doc.page_content] for doc in candidates]
    scores = reranker.predict(pairs)

    # Sort by score and take top k
    ranked = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True)
    return [doc for doc, score in ranked[:k]]

4. Cohere Rerank

from langchain.retrievers import CohereRerank
from langchain_cohere import CohereRerank

reranker = CohereRerank(model="rerank-english-v3.0", top_n=5)

# Wrap retriever with reranking
reranked_retriever = ContextualCompressionRetriever(
    base_compressor=reranker,
    base_retriever=vectorstore.as_retriever(search_kwargs={"k": 20})
)

Prompt Engineering for RAG

Contextual Prompt with Citations

rag_prompt = ChatPromptTemplate.from_template(
    """Answer the question based on the context below. Include citations using [1], [2], etc.

    If you cannot answer based on the context, say "I don't have enough information."

    Context:
    {context}

    Question: {question}

    Instructions:
    1. Use only information from the context
    2. Cite sources with [1], [2] format
    3. If uncertain, express uncertainty

    Answer (with citations):"""
)

Structured Output for RAG

from pydantic import BaseModel, Field

class RAGResponse(BaseModel):
    answer: str = Field(description="The answer based on context")
    confidence: float = Field(description="Confidence score 0-1")
    sources: list[str] = Field(description="Source document IDs used")
    reasoning: str = Field(description="Brief reasoning for the answer")

# Use with structured output
structured_llm = llm.with_structured_output(RAGResponse)

Evaluation Metrics

from typing import TypedDict

class RAGEvalMetrics(TypedDict):
    retrieval_precision: float  # Relevant docs / retrieved docs
    retrieval_recall: float     # Retrieved relevant / total relevant
    answer_relevance: float     # Answer addresses question
    faithfulness: float         # Answer grounded in context
    context_relevance: float    # Context relevant to question

async def evaluate_rag_system(
    rag_chain,
    test_cases: list[dict]
) -> RAGEvalMetrics:
    """Evaluate RAG system on test cases."""
    metrics = {k: [] for k in RAGEvalMetrics.__annotations__}

    for test in test_cases:
        result = await rag_chain.ainvoke({"question": test["question"]})

        # Retrieval metrics
        retrieved_ids = {doc.metadata["id"] for doc in result["context"]}
        relevant_ids = set(test["relevant_doc_ids"])

        precision = len(retrieved_ids & relevant_ids) / len(retrieved_ids)
        recall = len(retrieved_ids & relevant_ids) / len(relevant_ids)

        metrics["retrieval_precision"].append(precision)
        metrics["retrieval_recall"].append(recall)

        # Use LLM-as-judge for quality metrics
        quality = await evaluate_answer_quality(
            question=test["question"],
            answer=result["answer"],
            context=result["context"],
            expected=test.get("expected_answer")
        )
        metrics["answer_relevance"].append(quality["relevance"])
        metrics["faithfulness"].append(quality["faithfulness"])
        metrics["context_relevance"].append(quality["context_relevance"])

    return {k: sum(v) / len(v) for k, v in metrics.items()}

Resources

Best Practices

  1. Chunk Size: Balance between context (larger) and specificity (smaller) - typically 500-1000 tokens
  2. Overlap: Use 10-20% overlap to preserve context at boundaries
  3. Metadata: Include source, page, timestamp for filtering and debugging
  4. Hybrid Search: Combine semantic and keyword search for best recall
  5. Reranking: Use cross-encoder reranking for precision-critical applications
  6. Citations: Always return source documents for transparency
  7. Evaluation: Continuously test retrieval quality and answer accuracy
  8. Monitoring: Track retrieval metrics and latency in production

Common Issues

  • Poor Retrieval: Check embedding quality, chunk size, query formulation
  • Irrelevant Results: Add metadata filtering, use hybrid search, rerank
  • Missing Information: Ensure documents are properly indexed, check chunking
  • Slow Queries: Optimize vector store, use caching, reduce k
  • Hallucinations: Improve grounding prompt, add verification step
  • Context Too Long: Use compression or parent document retriever
rag-implementation – AI Agent Skills | Claude Skills