Aws Serverless
When & Why to Use This Skill
This Claude skill provides expert guidance and production-ready patterns for building AWS serverless applications. It covers essential components like AWS Lambda, API Gateway, DynamoDB, and SQS, while offering optimized deployment strategies using SAM or CDK. Users can leverage this skill to implement robust error handling, event-driven architectures, and performance optimizations to minimize cold starts and improve scalability.
Use Cases
- Case 1: Building RESTful or HTTP APIs using AWS Lambda and API Gateway with standardized response formats and CORS configuration.
- Case 2: Implementing asynchronous, event-driven processing pipelines using SQS and Lambda with partial batch failure handling to ensure reliability.
- Case 3: Architecting scalable database interactions with DynamoDB using best practices for connection reuse and environment variable management.
- Case 4: Optimizing serverless application performance by identifying and resolving cold start issues and managing dependency sizes.
- Case 5: Deploying production-ready infrastructure using Infrastructure as Code (IaC) tools like AWS SAM or CDK with predefined security policies.
| name | aws-serverless |
|---|---|
| description | "Specialized skill for building production-ready serverless applications on AWS. Covers Lambda functions, API Gateway, DynamoDB, SQS/SNS event-driven patterns, SAM/CDK deployment, and cold start optimization." |
| source | vibeship-spawner-skills (Apache 2.0) |
AWS Serverless
Patterns
Lambda Handler Pattern
Proper Lambda function structure with error handling
When to use: ['Any Lambda function implementation', 'API handlers, event processors, scheduled tasks']
```javascript
// Node.js Lambda Handler
// handler.js
// Initialize outside handler (reused across invocations)
const { DynamoDBClient } = require('@aws-sdk/client-dynamodb');
const { DynamoDBDocumentClient, GetCommand } = require('@aws-sdk/lib-dynamodb');
const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);
// Handler function
exports.handler = async (event, context) => {
// Optional: Don't wait for event loop to clear (Node.js)
context.callbackWaitsForEmptyEventLoop = false;
try {
// Parse input based on event source
const body = typeof event.body === 'string'
? JSON.parse(event.body)
: event.body;
// Business logic
const result = await processRequest(body);
// Return API Gateway compatible response
return {
statusCode: 200,
headers: {
'Content-Type': 'application/json',
'Access-Control-Allow-Origin': '*'
},
body: JSON.stringify(result)
};
} catch (error) {
console.error('Error:', JSON.stringify({
error: error.message,
stack: error.stack,
requestId: context.awsRequestId
}));
return {
statusCode: error.statusCode || 500,
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
error: error.message || 'Internal server error'
})
};
}
};
async function processRequest(data) {
// Your business logic here
const result = await docClient.send(new GetCommand({
TableName: process.env.TABLE_NAME,
Key: { id: data.id }
}));
return result.Item;
}
# Python Lambda Handler
# handler.py
import json
import os
import logging
import boto3
from botocore.exceptions import ClientError
# Initialize outside handler (reused across invocations)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
dynamodb = boto3.resource('dynamodb')
table = dynamodb.Table(os.environ['TABLE_NAME'])
def handler(event, context):
try:
# Parse i
API Gateway Integration Pattern
REST API and HTTP API integration with Lambda
When to use: ['Building REST APIs backed by Lambda', 'Need HTTP endpoints for functions']
```yaml
# template.yaml (SAM)
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Globals:
Function:
Runtime: nodejs20.x
Timeout: 30
MemorySize: 256
Environment:
Variables:
TABLE_NAME: !Ref ItemsTable
Resources:
# HTTP API (recommended for simple use cases)
HttpApi:
Type: AWS::Serverless::HttpApi
Properties:
StageName: prod
CorsConfiguration:
AllowOrigins:
- "*"
AllowMethods:
- GET
- POST
- DELETE
AllowHeaders:
- "*"
# Lambda Functions
GetItemFunction:
Type: AWS::Serverless::Function
Properties:
Handler: src/handlers/get.handler
Events:
GetItem:
Type: HttpApi
Properties:
ApiId: !Ref HttpApi
Path: /items/{id}
Method: GET
Policies:
- DynamoDBReadPolicy:
TableName: !Ref ItemsTable
CreateItemFunction:
Type: AWS::Serverless::Function
Properties:
Handler: src/handlers/create.handler
Events:
CreateItem:
Type: HttpApi
Properties:
ApiId: !Ref HttpApi
Path: /items
Method: POST
Policies:
- DynamoDBCrudPolicy:
TableName: !Ref ItemsTable
# DynamoDB Table
ItemsTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
- AttributeName: id
AttributeType: S
KeySchema:
- AttributeName: id
KeyType: HASH
BillingMode: PAY_PER_REQUEST
Outputs:
ApiUrl:
Value: !Sub "https://${HttpApi}.execute-api.${AWS::Region}.amazonaws.com/prod"
// src/handlers/get.js
const { getItem } = require('../lib/dynamodb');
exports.handler = async (event) => {
const id = event.pathParameters?.id;
if (!id) {
return {
statusCode: 400,
body: JSON.stringify({ error: 'Missing id parameter' })
};
}
const item =
Event-Driven SQS Pattern
Lambda triggered by SQS for reliable async processing
When to use: ['Decoupled, asynchronous processing', 'Need retry logic and DLQ', 'Processing messages in batches']
```yaml
# template.yaml
Resources:
ProcessorFunction:
Type: AWS::Serverless::Function
Properties:
Handler: src/handlers/processor.handler
Events:
SQSEvent:
Type: SQS
Properties:
Queue: !GetAtt ProcessingQueue.Arn
BatchSize: 10
FunctionResponseTypes:
- ReportBatchItemFailures # Partial batch failure handling
ProcessingQueue:
Type: AWS::SQS::Queue
Properties:
VisibilityTimeout: 180 # 6x Lambda timeout
RedrivePolicy:
deadLetterTargetArn: !GetAtt DeadLetterQueue.Arn
maxReceiveCount: 3
DeadLetterQueue:
Type: AWS::SQS::Queue
Properties:
MessageRetentionPeriod: 1209600 # 14 days
// src/handlers/processor.js
exports.handler = async (event) => {
const batchItemFailures = [];
for (const record of event.Records) {
try {
const body = JSON.parse(record.body);
await processMessage(body);
} catch (error) {
console.error(`Failed to process message ${record.messageId}:`, error);
// Report this item as failed (will be retried)
batchItemFailures.push({
itemIdentifier: record.messageId
});
}
}
// Return failed items for retry
return { batchItemFailures };
};
async function processMessage(message) {
// Your processing logic
console.log('Processing:', message);
// Simulate work
await saveToDatabase(message);
}
# Python version
import json
import logging
logger = logging.getLogger()
def handler(event, context):
batch_item_failures = []
for record in event['Records']:
try:
body = json.loads(record['body'])
process_message(body)
except Exception as e:
logger.error(f"Failed to process {record['messageId']}: {e}")
batch_item_failures.append({
'itemIdentifier': record['messageId']
})
return {'batchItemFailures': batch_ite
Anti-Patterns
❌ Monolithic Lambda
Why bad: Large deployment packages cause slow cold starts. Hard to scale individual operations. Updates affect entire system.
❌ Large Dependencies
Why bad: Increases deployment package size. Slows down cold starts significantly. Most of SDK/library may be unused.
❌ Synchronous Calls in VPC
Why bad: VPC-attached Lambdas have ENI setup overhead. Blocking DNS lookups or connections worsen cold starts.
⚠️ Sharp Edges
| Issue | Severity | Solution |
|---|---|---|
| Issue | high | ## Measure your INIT phase |
| Issue | high | ## Set appropriate timeout |
| Issue | high | ## Increase memory allocation |
| Issue | medium | ## Verify VPC configuration |
| Issue | medium | ## Tell Lambda not to wait for event loop |
| Issue | medium | ## For large file uploads |
| Issue | high | ## Use different buckets/prefixes |
