social-media-trends-research
Programmatic social media and marketing research using free tools: pytrends (Google Trends), yars (Reddit without API keys), and Perplexity MCP (Twitter/TikTok/Web). Use when finding trending topics in a niche, tracking keyword velocity and volume, monitoring Reddit discussions, discovering what's going viral, or researching content opportunities before writing. Zero-cost research stack with built-in rate limiting. Complements content-marketing-social-listening skill with executable code.
When & Why to Use This Skill
This Claude skill enables programmatic social media and market research using free, zero-cost tools like Google Trends (pytrends) and Reddit. It allows users to track keyword velocity, monitor community discussions, and identify viral content opportunities without requiring expensive API keys, making it an essential tool for data-driven content strategy and competitive analysis.
Use Cases
- Niche Trend Discovery: Identify 'breakout' topics with explosive growth in specific industries using Google Trends velocity and volume data.
- Social Listening & Sentiment Analysis: Scrape Reddit discussions to understand audience pain points, frequently asked questions, and community sentiment regarding specific products or niches.
- Content Opportunity Research: Analyze rising queries and related topics to brainstorm high-traffic blog posts, videos, or social media updates before writing.
- Cross-Platform Viral Tracking: Leverage Perplexity MCP to discover trending content formats and viral posts across TikTok, Twitter (X), and LinkedIn.
- Keyword Performance Monitoring: Track interest over time for specific keywords across different geographic regions to optimize localized marketing campaigns.
| name | social-media-trends-research |
|---|---|
| description | "Programmatic social media and marketing research using free tools: pytrends (Google Trends), yars (Reddit without API keys), and Perplexity MCP (Twitter/TikTok/Web). Use when finding trending topics in a niche, tracking keyword velocity and volume, monitoring Reddit discussions, discovering what's going viral, or researching content opportunities before writing. Zero-cost research stack with built-in rate limiting. Complements content-marketing-social-listening skill with executable code." |
Social Media Trends Research
Overview
Programmatic trend research using three free tools:
- pytrends: Google Trends data (velocity, volume, related queries)
- yars: Reddit scraping without API keys
- Perplexity MCP: Twitter/TikTok/Web trends (via Claude's built-in MCP)
This skill provides executable code for trend research. Use alongside content-marketing-social-listening for strategy and perplexity-search for deep queries.
Quick Setup
# Install dependencies (one-time)
pip install pytrends requests --break-system-packages
No API keys required. Reddit scraping uses public .json endpoints.
Tool 1: pytrends (Google Trends)
What It Provides
- Real-time trending searches by country
- Interest over time for keywords
- Related queries (rising = velocity indicators)
- Interest by region
- Related topics
Basic Usage
from pytrends.request import TrendReq
import time
# Initialize (no API key needed)
pytrends = TrendReq(hl='en-US', tz=330) # tz=330 for India (IST)
# Get real-time trending searches
trending = pytrends.trending_searches(pn='india')
print(trending.head(20))
Research Your Niche Keywords
from pytrends.request import TrendReq
import time
pytrends = TrendReq(hl='en-US', tz=330)
# Define your niche keywords (max 5 per request)
keywords = ['heart health', 'cardiology', 'cholesterol']
# Build payload
pytrends.build_payload(keywords, timeframe='now 7-d', geo='IN')
# Get interest over time
interest = pytrends.interest_over_time()
print(interest)
# CRITICAL: Wait between requests to avoid rate limiting
time.sleep(3)
# Get related queries (THIS IS GOLD - shows rising topics)
related = pytrends.related_queries()
for kw in keywords:
print(f"\n=== Rising queries for '{kw}' ===")
rising = related[kw]['rising']
if rising is not None:
print(rising.head(10))
Find Viral/Breakout Topics
from pytrends.request import TrendReq
import time
pytrends = TrendReq(hl='en-US', tz=330)
def find_breakout_topics(keyword, geo=''):
"""Find topics with explosive growth (potential viral content)"""
pytrends.build_payload([keyword], timeframe='today 3-m', geo=geo)
time.sleep(3) # Rate limiting
related = pytrends.related_queries()
rising = related[keyword]['rising']
if rising is not None:
# Filter for breakout topics (marked as "Breakout" or very high %)
breakouts = rising[rising['value'] >= 1000] # 1000%+ growth
return breakouts
return None
# Example usage
breakouts = find_breakout_topics('heart health', geo='IN')
print(breakouts)
Rate Limiting Rules for pytrends
import time
# SAFE: 1 request per 3-5 seconds for casual use
time.sleep(5)
# BULK RESEARCH: 1 request per 60 seconds
time.sleep(60)
# If you get rate limited (429 error): Wait 60-120 seconds, then continue
# If persistent issues: Wait 4-6 hours before resuming
Useful Timeframes
| Timeframe | Use Case |
|---|---|
'now 1-H' |
Last hour (real-time spikes) |
'now 4-H' |
Last 4 hours |
'now 1-d' |
Last 24 hours |
'now 7-d' |
Last 7 days (best for trends) |
'today 1-m' |
Last 30 days |
'today 3-m' |
Last 90 days (velocity analysis) |
'today 12-m' |
Last year (seasonal patterns) |
Tool 2: Reddit (No API Keys - Public JSON Endpoints)
What It Provides
- Search Reddit for any keyword
- Get hot/top/rising posts from subreddits
- Post engagement data (upvotes, comments)
- No authentication required
Basic Usage
import requests
import time
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
# Search Reddit for your niche
url = "https://www.reddit.com/search.json?q=heart+health&limit=10&sort=relevance&t=week"
response = requests.get(url, headers=headers, timeout=10)
data = response.json()
# Display results
for child in data.get('data', {}).get('children', []):
post = child.get('data', {})
print(f"Title: {post.get('title')}")
print(f"Subreddit: r/{post.get('subreddit')}")
print(f"Score: {post.get('score')}")
print("---")
Get Hot Posts from Specific Subreddits
import requests
import time
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
# Define subreddits relevant to your niche
subreddits = ['cardiology', 'health', 'medicine']
for sub in subreddits:
print(f"\n=== Hot in r/{sub} ===")
try:
url = f"https://www.reddit.com/r/{sub}/hot.json?limit=10"
response = requests.get(url, headers=headers, timeout=10)
data = response.json()
for child in data.get('data', {}).get('children', [])[:5]:
post = child.get('data', {})
print(f"- [{post.get('score')}] {post.get('title')[:60]}...")
except Exception as e:
print(f"Error: {e}")
time.sleep(3) # Rate limiting between requests
Using the Bundled Reddit Scraper
A helper class is included in scripts/reddit_scraper.py:
from scripts.reddit_scraper import SimpleRedditScraper
scraper = SimpleRedditScraper()
# Search
results = scraper.search("heart health tips", limit=20)
for post in results['posts']:
print(f"[{post['score']}] r/{post['subreddit']}: {post['title']}")
# Get subreddit hot posts
results = scraper.get_subreddit("health", sort="hot", limit=10)
for post in results['posts']:
print(f"[{post['score']}] {post['title']}")
Rate Limiting Rules for Reddit
import time
# SAFE: 1 request per 2-3 seconds
time.sleep(3)
# If you get 429 errors: Wait 5-10 minutes
# Never do more than 60 requests per hour
Tool 3: Perplexity MCP (Twitter/TikTok/Web)
Use Claude's built-in Perplexity MCP for platforms you can't scrape directly.
Query Templates for Trend Research
Twitter/X Trends:
"What are the most discussed [YOUR NICHE] topics on Twitter/X this week?
Include specific examples of viral tweets and their engagement."
TikTok Trends (works from India):
"What [YOUR NICHE] content is trending on TikTok right now?
Include hashtags, view counts, and content formats that are working."
YouTube Trends:
"What [YOUR NICHE] videos are getting the most views on YouTube this week?
Include channel names, view counts, and video topics."
LinkedIn Professional:
"What [YOUR NICHE] topics are professionals discussing on LinkedIn this week?
Include examples of high-engagement posts."
General Viral Content:
"What [YOUR NICHE] content has gone viral across social media in the past 7 days?
Include platform, format, and why it resonated."
Using Perplexity with perplexity-search Skill
If you have the perplexity-search skill installed:
python scripts/perplexity_search.py \
"What cardiology topics are trending on Twitter and TikTok this week? Include specific viral posts and hashtags." \
--model sonar-pro
Combined Research Workflow
Complete Trend Research Function
from pytrends.request import TrendReq
import requests
import time
import json
from datetime import datetime
class TrendResearcher:
def __init__(self):
self.pytrends = TrendReq(hl='en-US', tz=330)
self.reddit_headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
def _reddit_request(self, url):
"""Make a Reddit API request."""
try:
response = requests.get(url, headers=self.reddit_headers, timeout=10)
response.raise_for_status()
return response.json()
except Exception as e:
return {'error': str(e)}
def research_niche(self, keywords, subreddits=None, geo='IN'):
"""
Complete trend research for a niche.
Args:
keywords: List of keywords (max 5)
subreddits: List of subreddit names to monitor
geo: Geographic region code
Returns:
Dictionary with all research data
"""
results = {
'timestamp': datetime.now().isoformat(),
'keywords': keywords,
'google_trends': {},
'reddit': {},
'recommendations': []
}
# 1. Google Trends - Interest Over Time
print("📊 Fetching Google Trends data...")
try:
self.pytrends.build_payload(keywords[:5], timeframe='now 7-d', geo=geo)
results['google_trends']['interest'] = self.pytrends.interest_over_time().to_dict()
time.sleep(5)
# Related queries (rising topics)
related = self.pytrends.related_queries()
results['google_trends']['rising_queries'] = {}
for kw in keywords[:5]:
rising = related[kw]['rising']
if rising is not None:
results['google_trends']['rising_queries'][kw] = rising.head(10).to_dict()
time.sleep(5)
except Exception as e:
results['google_trends']['error'] = str(e)
# 2. Reddit Research
print("👽 Fetching Reddit discussions...")
if subreddits:
for sub in subreddits[:5]:
try:
url = f"https://www.reddit.com/r/{sub}/hot.json?limit=10"
data = self._reddit_request(url)
posts = []
for child in data.get('data', {}).get('children', [])[:5]:
post = child.get('data', {})
posts.append({
'title': post.get('title', ''),
'score': post.get('score', 0),
'comments': post.get('num_comments', 0)
})
results['reddit'][sub] = posts
time.sleep(3)
except Exception as e:
results['reddit'][sub] = {'error': str(e)}
# 3. Keyword search on Reddit
print("🔍 Searching Reddit for keywords...")
for kw in keywords[:3]:
try:
url = f"https://www.reddit.com/search.json?q={kw}&limit=10&sort=relevance&t=week"
data = self._reddit_request(url)
posts = []
for child in data.get('data', {}).get('children', [])[:5]:
post = child.get('data', {})
posts.append({
'title': post.get('title', ''),
'subreddit': post.get('subreddit', ''),
'score': post.get('score', 0),
'comments': post.get('num_comments', 0)
})
results['reddit'][f'search_{kw}'] = posts
time.sleep(3)
except Exception as e:
results['reddit'][f'search_{kw}'] = {'error': str(e)}
# 4. Generate recommendations
results['recommendations'] = self._generate_recommendations(results)
return results
def _generate_recommendations(self, data):
"""Generate content recommendations from research data"""
recommendations = []
# From rising queries
rising = data.get('google_trends', {}).get('rising_queries', {})
for kw, queries in rising.items():
if isinstance(queries, dict) and 'query' in queries:
for query in list(queries['query'].values())[:3]:
recommendations.append({
'source': 'Google Trends',
'topic': query,
'reason': f"Rising search term related to '{kw}'"
})
# From Reddit hot posts
for sub, posts in data.get('reddit', {}).items():
if isinstance(posts, list):
for post in posts[:2]:
if post.get('score', 0) > 50:
recommendations.append({
'source': f'Reddit r/{sub}',
'topic': post.get('title', ''),
'reason': f"High engagement ({post.get('score')} upvotes)"
})
return recommendations
# Usage Example
if __name__ == "__main__":
researcher = TrendResearcher()
results = researcher.research_niche(
keywords=['heart health', 'cardiology', 'cholesterol'],
subreddits=['cardiology', 'health', 'medicine'],
geo='IN'
)
# Save results
with open('trend_research.json', 'w') as f:
json.dump(results, f, indent=2, default=str)
# Print recommendations
print("\n🎯 CONTENT RECOMMENDATIONS:")
for rec in results['recommendations']:
print(f"- [{rec['source']}] {rec['topic']}")
print(f" Why: {rec['reason']}")
Quick Reference Commands
Daily Trend Check (5 minutes)
from pytrends.request import TrendReq
import requests
import time
# Quick Google Trends check
pytrends = TrendReq(hl='en-US', tz=330)
pytrends.build_payload(['your keyword'], timeframe='now 1-d')
print(pytrends.related_queries()['your keyword']['rising'])
time.sleep(5)
# Quick Reddit check
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
url = "https://www.reddit.com/search.json?q=your+keyword&limit=10&t=day"
response = requests.get(url, headers=headers, timeout=10)
data = response.json()
for child in data.get('data', {}).get('children', [])[:5]:
post = child.get('data', {})
print(f"[{post.get('score')}] {post.get('title')}")
Weekly Deep Dive
# Use the TrendResearcher class above with:
# - 5 core keywords
# - 5 relevant subreddits
# - 90-day timeframe for velocity analysis
# Then use Perplexity MCP for:
# - Twitter trends in your niche
# - TikTok viral content
# - YouTube trending videos
# - LinkedIn discussions
Integration with Writing Skills
After research, pass findings to your writing skills:
1. Run trend research (this skill)
2. Identify top 3-5 opportunities
3. Use content-marketing-social-listening for strategy
4. Use cardiology-content-repurposer or similar for content creation
5. Use authentic-voice for final polish
Troubleshooting
pytrends Issues
| Error | Solution |
|---|---|
| 429 Too Many Requests | Wait 60 seconds, then increase sleep time |
| Empty results | Check if keyword has search volume |
| Connection error | Check internet, retry in 5 minutes |
Reddit Issues
| Error | Solution |
|---|---|
| 429 Rate Limited | Wait 10 minutes |
| Subreddit not found | Check subreddit name spelling |
| Empty results | Subreddit may be private or quarantined |
| Connection timeout | Increase timeout, check internet |
Best Practices
- Always use rate limiting: Sleep between requests
- Research in batches: Do weekly deep dives, not constant polling
- Save results: Cache research data locally
- Cross-reference: Validate trends across multiple platforms
- Act fast: Viral windows are short (24-72 hours)
Platform Coverage Summary
| Platform | Tool | Cost | Risk |
|---|---|---|---|
| Google Trends | pytrends | Free | Very Low |
| requests (public JSON) | Free | Low | |
| Twitter/X | Perplexity MCP | Free* | None |
| TikTok | Perplexity MCP | Free* | None |
| YouTube | Perplexity MCP | Free* | None |
| Perplexity MCP | Free* | None |
*Uses Claude's built-in MCP or OpenRouter credits if using perplexity-search skill
Bundled Resources
scripts/trend_research.py: Main CLI tool for complete trend researchscripts/reddit_scraper.py: Simple Reddit scraper class (no API keys)