unified-sql
Query databases and explore data. Use when the user mentions database, query, SQL, table, schema, data exploration, "check the data", "look at the database", "what's in the table", "show me records", "find in database", PostgreSQL, MySQL, SQLite, cross-database joins, data validation, or export query results. Also triggers on: exploring schemas, sampling data, running analytics queries, checking data quality, or any task involving database operations.
When & Why to Use This Skill
The Unified SQL skill enables Claude to interact seamlessly with multiple database systems, including PostgreSQL, MySQL, and SQLite, through a single, unified query engine. It simplifies complex data tasks by providing tools for automated schema exploration, cross-database federated joins, and secure data exports, allowing users to analyze disparate data sources without leaving the chat interface.
Use Cases
- Cross-Database Analytics: Perform federated queries to join data residing in different systems, such as combining user profiles from PostgreSQL with transaction logs from MySQL.
- Rapid Schema Exploration: Quickly understand database structures by listing tables, describing columns, and sampling data without writing manual boilerplate SQL.
- Data Quality Auditing: Run analytical queries and statistical checks to validate data integrity, identify null values, or detect anomalies across production and staging environments.
- Automated Reporting and Export: Execute complex SQL queries and automatically export the results into CSV, JSON, or Markdown formats for documentation or further processing.
| name | unified-sql |
|---|---|
| description | Query databases and explore data. Use when the user mentions database, query, SQL, table, schema, data exploration, "check the data", "look at the database", "what's in the table", "show me records", "find in database", PostgreSQL, MySQL, SQLite, cross-database joins, data validation, or export query results. Also triggers on: exploring schemas, sampling data, running analytics queries, checking data quality, or any task involving database operations. |
Unified SQL
Query and analyze data across PostgreSQL, MySQL, and SQLite databases using DuckDB as a unified query engine.
⚠️ MANDATORY FIRST STEP: List Available Databases
YOU MUST ALWAYS RUN THIS FIRST before attempting ANY database operation.
DO NOT skip this step. DO NOT assume database names. DO NOT run queries until you see the list of available databases.
# ALWAYS run this first - find and list configured databases
CREDS=".claude/data-analyze/credentials.json"
if [ -f "./$CREDS" ]; then
CREDS_FILE="./$CREDS"
echo "Using project credentials: $CREDS_FILE"
elif [ -f "$HOME/$CREDS" ]; then
CREDS_FILE="$HOME/$CREDS"
echo "Using user credentials: $CREDS_FILE"
else
echo "❌ No credentials file found!"
echo "Create credentials at: ./.claude/data-analyze/credentials.json (project) or ~/.claude/data-analyze/credentials.json (user)"
exit 1
fi
echo "Available databases:"
jq -r '.databases[] | " - \(.name) (\(.type))"' "$CREDS_FILE"
ONLY PROCEED with queries after seeing the list of available databases above.
Quick Start
Schema Exploration
# List all tables
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/schema_explorer.py --name prod_db --list-tables
# Describe a specific table
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/schema_explorer.py --name prod_db --describe users
# Sample data from a table
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/schema_explorer.py --name prod_db --sample orders --limit 10
Simple Queries
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/federated_query.py \
--name prod_db \
--query "SELECT * FROM prod_db.users WHERE created_at >= '2024-01-01' LIMIT 10"
Cross-Database Queries
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/federated_query.py \
--names prod_db,sales_db \
--query "SELECT u.email, o.order_id FROM prod_db.users u JOIN sales_db.orders o ON u.id = o.user_id"
Core Capabilities
1. Database Schema Exploration
Examine table structures, columns, and data types without writing SQL.
Available operations:
--list-tables: Show all tables in database--describe TABLE: Show column names, types, nullability--sample TABLE: Preview rows from table--stats TABLE: Show row counts and column statistics
Example workflow:
# Step 1: List tables
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/schema_explorer.py --name prod_db --list-tables
# Step 2: Examine specific table
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/schema_explorer.py --name prod_db --describe users
# Step 3: Sample data
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/schema_explorer.py --name prod_db --sample users --limit 5
2. Cross-Database Joins
Join tables across different database systems in a single query.
Pattern:
-- Databases are referenced by their credential names
-- For example, if you have "users_db" and "orders_db" in credentials.json
SELECT
u.column,
o.column
FROM users_db.table1 u
JOIN orders_db.table2 o ON u.id = o.foreign_id
Example:
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/federated_query.py \
--names users_db,orders_db \
--query "
SELECT
u.email,
COUNT(o.order_id) as total_orders
FROM users_db.users u
LEFT JOIN orders_db.orders o ON u.id = o.user_id
GROUP BY u.email
ORDER BY total_orders DESC
"
3. Query Analysis
Analyze query performance and execution plans.
Using EXPLAIN:
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/federated_query.py \
--name prod_db \
--query "EXPLAIN SELECT * FROM prod_db.large_table WHERE created_at >= '2024-01-01'"
4. Data Export
Export query results in multiple formats.
Supported formats: table, json, csv, markdown
# Export to JSON
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/federated_query.py \
--name prod_db \
--query "SELECT * FROM prod_db.users" \
--format json > output.json
# Export to CSV
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/federated_query.py \
--name prod_db \
--query "SELECT * FROM prod_db.analytics" \
--format csv > output.csv
Credential Management
Credential File Structure
Credentials are stored in .claude/data-analyze/credentials.json and searched in order:
- Project:
./.claude/data-analyze/credentials.json - User:
~/.claude/data-analyze/credentials.json
See ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/credentials.example.json for the template.
Key points:
- Each database needs a unique
name(this is what you reference in queries) - Supported types:
postgres,mysql,sqlite - PostgreSQL/MySQL: requires
host,port,database,user,password - SQLite: requires
pathto database file
Show available databases:
# Find and use credentials file (Project → User)
CREDS=".claude/data-analyze/credentials.json"
if [ -f "./$CREDS" ]; then
CREDS_FILE="./$CREDS"
elif [ -f "$HOME/$CREDS" ]; then
CREDS_FILE="$HOME/$CREDS"
else
echo "No credentials file found" >&2
exit 1
fi
jq -r '.databases[].name' "$CREDS_FILE"
jq -r '.databases[] | "\(.name): \(.type)"' "$CREDS_FILE"
Security Best Practices
- Never commit credentials -
.claude/is typically gitignored - Use read-only accounts - Grant minimal permissions for analytics queries
- Credential file locations:
- Project:
./.claude/data-analyze/credentials.json - User:
~/.claude/data-analyze/credentials.json
- Project:
- File permissions - Restrict access:
chmod 600 ~/.claude/data-analyze/credentials.json - Reference by name only - Scripts read credentials automatically, just use
--name
Security Notes
SQL Injection Protection:
- Table and schema names are validated (alphanumeric and underscores only)
- Credential names are validated before use
- By default, write operations (DROP, DELETE, INSERT, UPDATE, etc.) are blocked
- Use
--allow-writesflag only when write operations are explicitly needed
Read-Only Mode (Default):
The federated query tool runs in read-only mode by default. Dangerous SQL operations are blocked:
# This will be blocked by default
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/federated_query.py \
--name prod_db \
--query "DELETE FROM prod_db.users WHERE id = 1"
# Error: Dangerous SQL operation 'DELETE' detected. Use --allow-writes to enable.
# To allow write operations (use with caution)
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/federated_query.py \
--name prod_db \
--query "DELETE FROM prod_db.users WHERE id = 1" \
--allow-writes
Error Message Sanitization:
- Passwords and connection details are automatically redacted from error messages
- Sensitive information will not leak through error output
Usage Patterns
Single database:
# Scripts find credentials automatically (Project → User)
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/schema_explorer.py --name kolverse --list-tables
Multiple databases (federated query):
# Reference multiple databases by name (comma-separated)
python ${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/scripts/federated_query.py \
--names kolverse,analytics_db \
--query "SELECT * FROM kolverse.users u JOIN analytics_db.metrics m ON u.id = m.user_id"
Available Extensions
DuckDB supports many database extensions:
Pre-configured in scripts:
postgres- PostgreSQL databasesmysql- MySQL/MariaDB databasessqlite- SQLite file databases
Other useful extensions:
httpfs- Query remote files (S3, HTTP)parquet- Parquet file supportjson- JSON/NDJSON supporticu- Advanced string operations
See references/extensions.md for detailed extension documentation and usage examples.
Troubleshooting
Extension Not Found
# Install missing extension
con.execute("INSTALL postgres")
con.execute("LOAD postgres")
Query Timeout
- Add LIMIT clause to large queries
- Use WHERE filters to reduce data scanned
- Consider materializing intermediate results
Memory Issues
- Process data in batches
- Use streaming results:
con.execute(query).fetch_df_chunk() - Increase DuckDB memory limit:
con.execute("SET memory_limit='4GB'")
Resources
Scripts
- scripts/federated_query.py - Main federated query tool (supports
--name,--names) - scripts/schema_explorer.py - Database schema exploration tool (supports
--name) - scripts/credential_manager.py - Credential loading and validation
Credentials
.claude/data-analyze/credentials.json- Your database credentials (Project or User scope)${CLAUDE_PLUGIN_ROOT}/skills/unified-sql/credentials.example.json- Template for credentials file
References
- references/extensions.md - DuckDB extension documentation
- references/connection_examples.md - Connection string examples and patterns
- references/query_patterns.md - Common query patterns and optimizations