wrap

zettalyst's avatarfrom zettalyst

Session wrap-up workflow. Use when user asks to "wrap up session", "end session", "/wrap", or wants to analyze completed work before ending.

0stars🔀0forks📁View on GitHub🕐Updated Jan 11, 2026

When & Why to Use This Skill

The Wrap skill is a sophisticated multi-agent workflow designed to systematically conclude AI-assisted work sessions. It leverages parallel analysis agents to update project documentation, extract key learnings, and suggest follow-up tasks, ensuring seamless context preservation and project continuity. By automating the transition between work sessions, it prevents context loss and maintains an up-to-date project knowledge base.

Use Cases

  • Session Transition: Use when finishing a complex coding task to ensure all decisions, file changes, and progress are documented before closing the environment.
  • Context Preservation: Automatically update CLAUDE.md or other context files to provide the AI with the most current project state for the next session.
  • Knowledge Extraction: Extract 'Today I Learned' (TIL) points and technical insights from completed work to build a long-term team knowledge base.
  • Project Management: Generate prioritized follow-up task lists and identify automation opportunities based on the patterns detected during the session.
namewrap
descriptionSession wrap-up workflow. Use when user asks to "wrap up session", "end session", "/wrap", or wants to analyze completed work before ending.
version1.0.0

Wrap Skill

Comprehensive session wrap-up workflow with multi-agent analysis.

Execution Flow

┌─────────────────────────────────────────────────────┐
│  1. Check Git Status                                │
├─────────────────────────────────────────────────────┤
│  2. Phase 1: 4 Analysis Agents (Parallel)           │
│     ┌─────────────────┬─────────────────┐           │
│     │  doc-updater    │  automation-    │           │
│     │  (docs update)  │  scout          │           │
│     ├─────────────────┼─────────────────┤           │
│     │  learning-      │  followup-      │           │
│     │  extractor      │  suggester      │           │
│     └─────────────────┴─────────────────┘           │
├─────────────────────────────────────────────────────┤
│  3. Phase 2: Validation Agent (Sequential)          │
│     ┌───────────────────────────────────┐           │
│     │       duplicate-checker           │           │
│     └───────────────────────────────────┘           │
├─────────────────────────────────────────────────────┤
│  4. Integrate Results & AskUserQuestion             │
├─────────────────────────────────────────────────────┤
│  5. Execute Selected Actions                        │
└─────────────────────────────────────────────────────┘

Step 1: Check Git Status

git status --short
git diff --stat HEAD~3 2>/dev/null || git diff --stat

Step 2: Phase 1 - Analysis Agents (Parallel)

Execute 4 agents in parallel (single message with 4 Task calls).

Session Summary (Provide to all agents)

Session Summary:
- Work: [Main tasks performed]
- Files: [Created/modified files]
- Decisions: [Key decisions made]

Parallel Execution

Task(subagent_type="doc-updater", ...)
Task(subagent_type="automation-scout", ...)
Task(subagent_type="learning-extractor", ...)
Task(subagent_type="followup-suggester", ...)
Agent Role Output
doc-updater CLAUDE.md/context.md updates Specific content to add
automation-scout Detect automation patterns skill/command/agent suggestions
learning-extractor Extract learning points TIL format summary
followup-suggester Suggest follow-up tasks Prioritized task list

Step 3: Phase 2 - Validation Agent

Run after Phase 1 completes.

Task(
    subagent_type="duplicate-checker",
    prompt="""
Validate Phase 1 results.

## doc-updater proposals:
[doc-updater results]

## automation-scout proposals:
[automation-scout results]
"""
)

Step 4: Integrate Results

## Wrap Analysis Results

### Documentation Updates
[doc-updater summary]
- Duplicate check: [duplicate-checker feedback]

### Automation Suggestions
[automation-scout summary]
- Duplicate check: [duplicate-checker feedback]

### Learning Points
[learning-extractor summary]

### Follow-up Tasks
[followup-suggester summary]

Step 5: Action Selection

AskUserQuestion(
    questions=[{
        "question": "Which actions would you like to perform?",
        "header": "Wrap Options",
        "multiSelect": true,
        "options": [
            {"label": "Create commit (Recommended)", "description": "Commit changes"},
            {"label": "Update CLAUDE.md", "description": "Document new knowledge"},
            {"label": "Create automation", "description": "Generate skill/command/agent"},
            {"label": "Skip", "description": "End without action"}
        ]
    }]
)

Step 6: Execute Selected Actions

Execute only user-selected actions.


Quick Reference

When to Use

  • End of significant work session
  • Before switching to different project
  • After completing a feature or fixing a bug

When to Skip

  • Very short session with trivial changes
  • Only reading/exploring code
  • Quick one-off question answered

Arguments

  • Empty: Proceed interactively (full workflow)
  • Message provided: Use as commit message directly