youtube-script-master
Unified YouTube script creation for cardiology channels in Hinglish. Uses the COMPLETE research-engine pipeline (channel scraping, comment analysis, narrative monitoring, gap finding, view prediction) combined with RAG + PubMed for evidence. Data-driven topic selection, 15-30 min educational videos with 6-point voice check.
When & Why to Use This Skill
This Claude skill provides a comprehensive, data-driven framework for creating evidence-based cardiology YouTube scripts in Hinglish. It bridges the gap between complex medical research (PubMed/RAG) and engaging digital content by utilizing a sophisticated pipeline that analyzes competitor gaps, viewer sentiment, and trending health narratives. Designed for medical professionals, it ensures scripts are scientifically rigorous, culturally resonant, and optimized for audience retention.
Use Cases
- Evidence-Based Scriptwriting: Transforming technical medical data and PubMed research into structured 15-30 minute YouTube scripts that maintain a professional yet accessible Hinglish tone.
- Health Misinformation Debunking: Systematically addressing dangerous medical myths (e.g., statin fear or LDL skepticism) using a 'Steelman-Then-Correct' protocol to provide nuanced, non-judgmental corrections.
- Data-Driven Content Strategy: Identifying high-opportunity topics by analyzing competitor channel performance, comment sections, and 'demand signals' to maximize video reach and impact.
- Hinglish Audience Engagement: Crafting content with a precise 70/30 Hindi-English linguistic balance, ensuring technical medical terms are clear while the narrative remains relatable to the Indian diaspora.
| name | youtube-script-master |
|---|---|
| description | "Unified YouTube script creation for cardiology channels in Hinglish. Uses the COMPLETE research-engine pipeline (channel scraping, comment analysis, narrative monitoring, gap finding, view prediction) combined with RAG + PubMed for evidence. Data-driven topic selection, 15-30 min educational videos with 6-point voice check." |
YouTube Script Master
Unified skill for creating data-driven, evidence-based cardiology YouTube scripts in Hinglish.
This skill CONSUMES data from the research-engine Python pipeline. It does NOT replace that pipeline with manual web searches.
CRITICAL: Run Research Pipeline First
Before writing ANY script, the research-engine should have been run to generate:
- Content calendar with prioritized topics
- Demand analysis (what people want)
- Gap analysis (where opportunities are)
- Narrative analysis (what misinformation to address)
cd "/Users/shaileshsingh/cowriting system/research-engine"
python run_pipeline.py --quick # Quick mode (~10 min)
python run_pipeline.py # Full mode (~30 min)
Complete Architecture
┌─────────────────────────────────────────────────────────────────┐
│ PHASE 1: DATA COLLECTION (Weekly - Python Pipeline) │
├─────────────────────────────────────────────────────────────────┤
│ │
│ channel_scraper.py ──► Scrapes 35+ channels (no API needed) │
│ Competition, inspiration, belief-seeders│
│ │
│ comment_scraper.py ──► Downloads comments from top videos │
│ Extracts questions and pain points │
│ │
│ OUTPUT: /data/scraped/latest_scrape.json │
│ /data/scraped/latest_comments.json │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ PHASE 2: ANALYSIS (Python Pipeline) │
├─────────────────────────────────────────────────────────────────┤
│ │
│ demand_signals.py ──► What topics get views/engagement │
│ Question themes, demand scoring │
│ │
│ narrative_monitor.py ──► Tracks 8 dangerous narratives: │
│ 1. LDL skepticism │
│ 2. Statin fear │
│ 3. Insulin primacy │
│ 4. Fasting absolutism │
│ 5. Supplement superiority │
│ 6. Seed oil villain │
│ 7. Exercise compensation │
│ 8. Fear mongering │
│ │
│ gap_finder.py ──► Content opportunities │
│ CORRECTION_OPPORTUNITY (misinformation) │
│ LANGUAGE_GAP (English→Hindi needed) │
│ DEMAND_GAP (questions but no videos) │
│ PROVEN_TOPIC (high views in English) │
│ │
│ view_predictor.py ──► ML prediction of video performance │
│ Ridge regression + TF-IDF on title │
│ │
│ OUTPUT: /output/demand_analysis_*.json │
│ /output/narrative_analysis_*.json │
│ /output/content_gaps_*.json │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ PHASE 3: PLANNING (Python Pipeline) │
├─────────────────────────────────────────────────────────────────┤
│ │
│ idea_combinator.py ──► Seed ideas (300+) × Modifiers (215+) │
│ Filters by pillar, archetype, compat │
│ Prioritizes by demand + gap scores │
│ │
│ calendar_generator.py ──► 100-day content calendar │
│ Mon/Wed/Fri schedule │
│ Balanced by pillar and audience │
│ │
│ OUTPUT: /output/calendar.json │
│ /output/100-day-calendar.md (Obsidian-ready) │
│ /output/idea-briefs/*.md (per-video briefs) │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ PHASE 4: KNOWLEDGE BUILDING (Per Video) │
├─────────────────────────────────────────────────────────────────┤
│ │
│ knowledge_pipeline.py ──► RAG + PubMed in parallel │
│ ├─► RAG: Your textbooks/guidelines (AstraDB) │
│ └─► PubMed: Latest research (NCBI API) │
│ │
│ OUTPUT: Knowledge brief with citations │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ PHASE 5: SCRIPT WRITING (This Skill - Opus) │
├─────────────────────────────────────────────────────────────────┤
│ │
│ INPUTS: │
│ - calendar.json (which topic, why now) │
│ - content_gaps.json (opportunity type) │
│ - narrative_analysis.json (if debunk: which narrative) │
│ - knowledge_brief (evidence for claims) │
│ │
│ APPLY: │
│ - Hinglish rules (70% Hindi / 30% English) │
│ - Script structure (hook → body → CTA) │
│ - Debunk protocol (if correction opportunity) │
│ - 6-point voice check │
│ │
│ OUTPUT: Complete 15-30 min script in Hinglish │
└─────────────────────────────────────────────────────────────────┘
Using Research Engine Outputs
Step 1: Check the Content Calendar
# See next 5 topics to create
python calendar_generator.py --show-next 5
# Or read directly
cat /output/calendar.json | head -100
Each calendar entry includes:
seed_idea- The topicmodifier- The anglegap_score- Why this is an opportunityrecommended_date- When to publish
Step 2: Check If Debunk Needed
# Get threat ranking of narratives
python analyzer/narrative_monitor.py --threats
# Generate debunk ideas
python analyzer/narrative_monitor.py --debunk
# Get response video ideas for high-reach misinformation
python analyzer/narrative_monitor.py --response
Output includes:
- Which channels are promoting which narratives
- View counts of misinformation videos
- Pre-generated Hinglish hooks for debunk content
- Matched seed ideas for counter-content
Step 3: Check Correction Opportunities
python analyzer/gap_finder.py --corrections
Returns high-reach misinformation videos with:
- Video title and views
- Narratives detected
- Suggested correction format (direct_response, evidence_synthesis, gentle_correction, indian_context)
Step 4: Build Knowledge for Selected Topic
from rag_pipeline.src.knowledge_pipeline import KnowledgePipeline
pipeline = KnowledgePipeline(verbose=True)
brief = pipeline.synthesize_knowledge("Your selected topic")
Step 5: Write Script Using This Skill
With all data ready, apply the rules below.
35+ Tracked Channels (Data Source)
The research-engine tracks these channels in target_channels.json:
Competition (Hindi) - Differentiate/Monitor
- Dr Navin Agrawal CARDIO CARE (300K+)
- Cardiac Second Opinion (100K+)
- SAAOL Heart Center (3.4M) - ANTI-PATTERN
Indian Mega Channels - Monitor/Differentiate
- Fit Tuber (7M+)
- Dr Vikas Bangar (1M+)
- Satvic Movement (1M+)
- Dr Biswaroop Roy Chowdhury (4M+) - CRITICAL ANTI-PATTERN
Inspiration (English) - Absorb Techniques
- Peter Attia MD (1.5M+) - PRIMARY MODEL
- York Cardiology (1M+)
- Nutrition Made Simple (1.2M+)
- The Proof with Simon Hill (1M+)
- Dr Ford Brewer (700K+)
- Medlife Crisis (1.5M+)
Belief Seeders - HIGH DEBUNK PRIORITY
- Dr Eric Berg (11M+) - Keto, insulin primacy, statin fear
- Dr Sten Ekberg (3.5M+) - Insulin, fasting
- Dr Ken Berry (2.5M+) - Carnivore, LDL skepticism
- Dr Mark Hyman (3M+) - Functional medicine
- Dr Jason Fung (1M+) - Fasting
- Dr Pradip Jamnadas (1M+) - Popular in Indian diaspora
8 Tracked Narratives (For Debunk Content)
The narrative_monitor.py tracks these dangerous beliefs:
| Narrative | What They Claim | Key Channels |
|---|---|---|
| ldl_skepticism | "LDL doesn't cause heart disease" | Berg, Ekberg, Berry, Low Carb Down Under |
| statin_fear | "Statins are dangerous/unnecessary" | Berg, Berry, SAAOL, Satvic |
| insulin_primacy | "Only insulin matters, not LDL" | Ekberg, Fung, Jamnadas, Hyman |
| fasting_absolutism | "Fasting cures/reverses everything" | Fung, Jamnadas, DeLauer |
| supplement_superiority | "Supplements > medications" | Berg, Hyman, Huberman |
| seed_oil_villain | "Seed oils cause heart disease" | Berry, Saladino |
| exercise_compensation | "Exercise reverses plaque" | Various |
| fear_mongering | "Doctors/pharma hide cures" | Dr Biswaroop, SAAOL |
When writing debunk content, use the Steelman-Then-Correct Protocol below.
Hinglish Language Rules
Word Choice Matrix
| Context | Use Hindi | Use English |
|---|---|---|
| Emotions | Dil, zindagi, takleef | - |
| Medical terms | - | Cholesterol, BP, diabetes, LDL, HDL |
| Actions | Samjhiye, dekhiye, sochiye | - |
| Data | - | 80%, studies show, evidence |
| Body parts | - | Heart, arteries, blood |
| Severity | Khatarnak, serious | Critical, emergency |
Ratio: 70% Hindi / 30% English (technical terms only)
Sentence Patterns
Explanation:
"Cholesterol do type ka hota hai - LDL jo 'bad cholesterol' hai, aur HDL jo 'good cholesterol' hai. LDL zyada ho toh arteries mein jam jaata hai..."
Evidence citation:
"2023 ki ek study, jisme 50,000 Indians the, usme paya gaya ki..."
Practical advice:
"Toh aap kya karein? Simple hai - daily 30 minute walk, dinner 8 baje se pehle, aur sodium kam..."
Transitions (Hindi)
- Point to point: "Ab doosri baat...", "Teen number...", "Sabse zaroori baat..."
- Contrast: "Lekin...", "Haan, magar...", "Yahan twist hai..."
- Emphasis: "Dhyan se suniye...", "Yeh important hai...", "Yeh mat bhooliye..."
- Story: "Ek patient ka case batata hoon...", "Mere saath kya hua..."
Script Structure (15-30 min videos)
HOOK (0:00 - 0:30)
Stop the scroll, create curiosity gap.
Patterns:
- Surprising statistic: "80% Indians jo yeh karte hain, unhe heart disease ka risk double hai..."
- Myth challenge: "Aapne suna hoga ki [belief]. Yeh galat hai. Main batata hoon kyun..."
- Story open: "Ek patient aaye mere paas, 42 saal ke. Unka case aapki aankhen khol dega..."
- Direct question: "Kya aap [common thing] karte ho? Yeh aapke dil ke liye kya kar raha hai?"
Rules:
- NO "Namaste dosto" (boring, skippable)
- First 5 seconds = most critical
- Create information gap that MUST be filled
For Debunk Videos, narrative_monitor.py generates Hinglish hooks like:
- "YouTube pe dekha ki LDL kharab nahi hai? Ek cardiologist ki sachai suniye..."
- "Statin se darr lagta hai? Main aapka darr samajhta hoon. Ab evidence dekhte hain..."
INTRO + CREDIBILITY (0:30 - 2:00)
Establish authority, set expectations.
"Main Dr. Shailesh, interventional cardiologist. Pichhle 15 saalon mein hazaaron patients dekhe hain. Aaj main aapko woh bataunga jo main apne patients ko clinic mein batata hoon..."
BODY - Main Content (2:00 - 25:00)
Structure Options:
A. Listicle (3-5 points)
Point 1: [Setup → Evidence → Practical takeaway]
Transition: "Ab doosri baat..."
Point 2: [Setup → Evidence → Practical takeaway]
...
B. Story-driven
Patient case introduction
What happened (tension)
Medical explanation (education)
Resolution
Lessons learned
C. Myth-busting (Debunk Format)
State the myth clearly
Steelman: Why people believe it (from narrative_monitor data)
Evidence: What studies actually show (from knowledge_brief)
Nuance: The complete picture
What to do instead
Engagement Beats (every 3-4 minutes):
- Question to viewer: "Aapko kya lagta hai?"
- Surprising reveal: "Lekin yahan twist hai..."
- Relatable moment: "Aap bhi soch rahe honge..."
- Pattern interrupt: Change pace, tone, or visual cue
SUMMARY + CTA (25:00 - 30:00)
Summary:
- Recap 3 key points (brief)
- One sentence takeaway
- "Agar sirf ek cheez yaad rakhni ho..."
CTA (choose one primary):
- Subscribe: "Is channel pe aisi videos regularly aati hain..."
- Comment: "Apna sawaal neeche likhiye, main jawab dunga..."
- Share: "Kisi apne ko bhejiye jinke kaam aa sake..."
Steelman-Then-Correct Protocol (For Debunk Content)
Step 1: Find the Kernel of Truth
Every popular health belief contains something true. Find it.
| Belief | Kernel of Truth |
|---|---|
| "LDL doesn't matter" | LDL alone isn't full picture; particle count, inflammation matter |
| "Statins are poison" | Statins do have side effects; not everyone needs them |
| "Fasting cures everything" | Fasting has metabolic benefits; caloric restriction helps |
| "Insulin is the real problem" | Insulin resistance IS important; metabolic health matters |
Step 2: Acknowledge Explicitly
Wrong:
"Yeh log galat hain. LDL clearly causes heart disease."
Right:
"Yeh belief kahan se aayi? Actually, ek valid point hai. LDL alone se poori picture nahi milti. ApoB, particle count, inflammation - sab matter karta hai. Lekin iska matlab yeh nahi ki LDL matter hi nahi karta..."
Step 3: Show the Logical Error
- Oversimplification: "It's not that simple..."
- Cherry-picking studies: "Jab hum ALL studies dekhte hain..."
- Anecdote vs evidence: "Kuch logon ka experience aisa hai, but population level pe..."
Tone: Never Say / Instead Say
| Never Say | Instead Say |
|---|---|
| "Yeh log galat hain" | "Is approach mein ek problem hai" |
| "Bakwaas" | "Story itni simple nahi hai" |
| "Aap fool ban rahe ho" | "Partial truth hai, but..." |
| "Dangerous misinformation" | "Evidence kuch aur kehti hai" |
6-Point Voice Check
Before delivering ANY script, verify all 6:
| # | Check | Question |
|---|---|---|
| 1 | Authority | Would Topol/Attia/Huberman say this in Hinglish? |
| 2 | Domain Expert | Sounds like cardiologist, NOT wellness guru? |
| 3 | Rigor | Would pass as journal review (in English)? |
| 4 | Accessibility | 7th grader in Delhi can follow? |
| 5 | Non-Preachy | Explaining, NOT sermonizing? |
| 6 | Non-Judgmental | Evidence, NOT lifestyle shaming? |
See voice-check.md for detailed criteria.
Evidence Citation Protocol
For Studies
"2023 mein European Heart Journal mein ek meta-analysis aayi - 200 studies, 20 lakh logon pe. Finding? [specific finding]..."
For Guidelines
"ESC guidelines - Europe ke top cardiologists - recommend karte hain ki [specific recommendation]. Kyun? Because evidence shows..."
For Clinical Experience
"Mere practice mein pichhle 15 saal mein, maine [X] cases dekhe hain jahan [observation]..."
Quick Reference: Data Files
| File | Location | Contains |
|---|---|---|
| Content calendar | /output/calendar.json |
What to create and when |
| Demand analysis | /output/demand_analysis_*.json |
What audience wants |
| Gap analysis | /output/content_gaps_*.json |
Where opportunities are |
| Narrative threats | /output/narrative_analysis_*.json |
What to debunk |
| Seed ideas | /data/seed-ideas.json |
300+ topic seeds |
| Modifiers | /data/modifiers.json |
215+ content angles |
| Target channels | /data/target_channels.json |
35+ tracked channels |
Slash Commands
| Command | Purpose |
|---|---|
/research-and-script [topic] |
Full workflow: data → knowledge → script |
/show-calendar |
View content calendar |
/debunk-script [narrative] |
Write correction video |
/idea-details [idea-id] |
Full research on specific idea |
Deprecated Skills
This skill supersedes:
/.claude/skills/youtube-script-hinglish/skill.md- DEPRECATED/.claude/skills/debunk-script-writer/skill.md- DEPRECATED/.claude/skills/cardiology-youtube-scriptwriter/SKILL.md- DEPRECATED
Use this unified skill instead.
This skill ensures every YouTube script is DATA-DRIVEN (from research-engine) + EVIDENCE-BASED (from RAG+PubMed) + AUTHENTIC (Hinglish voice with 6-point check).