localization-urdu
Provide per-chapter Urdu translation toggle and manage translated content delivery. Use when translating chapters, caching translations, or implementing language toggles.
When & Why to Use This Skill
The Localization Urdu skill provides an end-to-end automated pipeline for translating technical documentation into Urdu. It ensures high-quality output by utilizing a specialized glossary for technical terms (such as robotics and AI) and optimizes performance through a checksum-based caching system that only re-processes modified content. This skill is ideal for developers looking to implement bilingual support in documentation frameworks like Docusaurus or enhance RAG systems with localized content.
Use Cases
- Technical Documentation Localization: Automatically translate Markdown or MDX-based technical manuals into Urdu while maintaining terminology consistency via a JSON glossary.
- Web Content Management: Implement a per-chapter translation toggle for websites, allowing users to switch between English and Urdu seamlessly with optimized content delivery.
- Bilingual RAG Systems: Populate vector databases like Qdrant with Urdu translations and language tags to support multilingual retrieval-augmented generation for AI chat widgets.
- Incremental Content Updates: Use the checksum-based caching mechanism to efficiently update only the translated sections that have changed in the source material, saving API costs and time.
| name | localization-urdu |
|---|---|
| description | Provide per-chapter Urdu translation toggle and manage translated content delivery. Use when translating chapters, caching translations, or implementing language toggles. |
Localization Urdu Skill
Instructions
Translation pipeline
- Extract sections by heading from source Markdown/MDX
- Translate via OpenAI/ChatKit translation model
- Keep glossary for robotics terms (JSON file)
- Cache translations with checksum per section
- Rerun only when source checksum changes
Storage
- Option A: Markdown copies (
.ur.mdx) alongside English - Option B: Neon table
translations(section_id, lang, content) - Tag Qdrant payload with
langfor bilingual RAG
- Option A: Markdown copies (
Frontend
- Add language toggle in Docusaurus layout
- Load Urdu content when available, fallback to English
- Ensure chat widget passes desired language to backend
Quality
- Spot-check key technical terms
- Allow glossary overrides via JSON config
- Keep technical terms consistent across chapters
Examples
# Translation function
async def translate_section(content: str, glossary: dict) -> str:
prompt = f"""Translate to Urdu. Keep technical terms from glossary.
Glossary: {glossary}
Content: {content}
"""
# Call OpenAI
return translated_content
// glossary.json
{
"Physical AI": "فزیکل اے آئی",
"Humanoid Robot": "ہیومنائیڈ روبوٹ",
"ROS 2": "ROS 2",
"NVIDIA Isaac": "NVIDIA Isaac"
}
Definition of Done
- Translation pipeline runs and caches results; reruns are incremental
- Urdu toggle renders translated sections for at least one sample chapter
- Backend can return Urdu-context answers when requested