sentiment-analyzer
Analyze text sentiment (positive/negative/neutral) with confidence scores, emotion detection, and visualization. Supports single text, CSV batch, and trend analysis.
When & Why to Use This Skill
The Sentiment Analyzer is a comprehensive NLP tool designed to decode the emotional subtext of text data. It enables users to automatically classify sentiment as positive, negative, or neutral while providing granular emotion detection (joy, anger, etc.) and polarity scoring. By supporting batch CSV processing and trend visualization, it transforms raw text into actionable insights for brand monitoring and customer experience optimization.
Use Cases
- E-commerce Review Analysis: Batch process thousands of product reviews from CSV files to calculate average satisfaction scores and visualize sentiment distribution.
- Brand Reputation Monitoring: Track sentiment trends over time from social media posts or news mentions to identify the impact of marketing campaigns or PR events.
- Customer Feedback Prioritization: Automatically detect high-arousal negative emotions (like anger or fear) in support tickets to escalate critical issues immediately.
- Market Research: Analyze open-ended survey responses to identify subjective opinions versus objective statements, helping researchers understand the 'why' behind consumer behavior.
| name | sentiment-analyzer |
|---|---|
| description | Analyze text sentiment (positive/negative/neutral) with confidence scores, emotion detection, and visualization. Supports single text, CSV batch, and trend analysis. |
Sentiment Analyzer
Analyze the sentiment of text content with detailed scoring, emotion detection, and visualization capabilities. Process single texts, CSV files, or track sentiment trends over time.
Quick Start
from scripts.sentiment_analyzer import SentimentAnalyzer
# Analyze single text
analyzer = SentimentAnalyzer()
result = analyzer.analyze("I love this product! It's amazing.")
print(f"Sentiment: {result['sentiment']} ({result['score']:.2f})")
# Batch analyze CSV
results = analyzer.analyze_csv("reviews.csv", text_column="review")
analyzer.plot_distribution("sentiment_dist.png")
Features
- Sentiment Classification: Positive, negative, neutral with confidence
- Polarity Scoring: -1.0 (negative) to +1.0 (positive)
- Subjectivity Detection: Objective vs subjective content
- Emotion Detection: Joy, anger, sadness, fear, surprise
- Batch Processing: Analyze CSV files with any text column
- Trend Analysis: Track sentiment over time
- Visualizations: Distribution plots, trend charts, word clouds
API Reference
Initialization
analyzer = SentimentAnalyzer()
Single Text Analysis
result = analyzer.analyze("This is great!")
# Returns:
# {
# 'text': 'This is great!',
# 'sentiment': 'positive', # positive, negative, neutral
# 'score': 0.85, # -1.0 to 1.0
# 'confidence': 0.92, # 0.0 to 1.0
# 'subjectivity': 0.75, # 0.0 (objective) to 1.0 (subjective)
# 'emotions': {'joy': 0.8, 'anger': 0.0, ...}
# }
Batch Analysis
# From list
texts = ["Great product!", "Terrible service.", "It's okay."]
results = analyzer.analyze_batch(texts)
# From CSV
results = analyzer.analyze_csv(
"reviews.csv",
text_column="review_text",
output="results.csv"
)
Trend Analysis
# Analyze sentiment over time
results = analyzer.analyze_csv(
"posts.csv",
text_column="content",
date_column="posted_at"
)
analyzer.plot_trend("sentiment_trend.png")
Visualizations
# Sentiment distribution
analyzer.plot_distribution("distribution.png")
# Sentiment over time
analyzer.plot_trend("trend.png")
# Word cloud by sentiment
analyzer.plot_wordcloud("positive", "positive_words.png")
CLI Usage
# Analyze single text
python sentiment_analyzer.py --text "I love this product!"
# Analyze file
python sentiment_analyzer.py --input reviews.csv --column review --output results.csv
# With visualization
python sentiment_analyzer.py --input reviews.csv --column text --plot distribution.png
# Trend analysis
python sentiment_analyzer.py --input posts.csv --column content --date posted_at --trend trend.png
CLI Arguments
| Argument | Description | Default |
|---|---|---|
--text |
Single text to analyze | - |
--input |
Input CSV file | - |
--column |
Text column name | text |
--date |
Date column for trends | - |
--output |
Output CSV file | - |
--plot |
Save distribution plot | - |
--trend |
Save trend plot | - |
--format |
Output format (json, csv) | json |
Examples
Product Review Analysis
analyzer = SentimentAnalyzer()
results = analyzer.analyze_csv("amazon_reviews.csv", text_column="review")
# Summary statistics
positive = sum(1 for r in results if r['sentiment'] == 'positive')
negative = sum(1 for r in results if r['sentiment'] == 'negative')
print(f"Positive: {positive}, Negative: {negative}")
# Average sentiment score
avg_score = sum(r['score'] for r in results) / len(results)
print(f"Average sentiment: {avg_score:.2f}")
Social Media Monitoring
analyzer = SentimentAnalyzer()
# Analyze tweets with timestamps
results = analyzer.analyze_csv(
"tweets.csv",
text_column="tweet_text",
date_column="created_at"
)
# Plot sentiment trend
analyzer.plot_trend("twitter_sentiment.png", title="Brand Sentiment Over Time")
Customer Feedback Categorization
analyzer = SentimentAnalyzer()
feedback = [
"Your support team was incredibly helpful!",
"The product broke after one day.",
"Shipping was on time.",
"I'm extremely disappointed with the quality.",
"It works as expected, nothing special."
]
for text in feedback:
result = analyzer.analyze(text)
print(f"{result['sentiment'].upper():8} ({result['score']:+.2f}): {text[:50]}")
Output Format
JSON Output
{
"text": "I love this product!",
"sentiment": "positive",
"score": 0.85,
"confidence": 0.92,
"subjectivity": 0.75,
"emotions": {
"joy": 0.82,
"anger": 0.02,
"sadness": 0.01,
"fear": 0.03,
"surprise": 0.12
}
}
CSV Output
| text | sentiment | score | confidence | subjectivity |
|---|---|---|---|---|
| Great product! | positive | 0.85 | 0.91 | 0.80 |
| Terrible... | negative | -0.72 | 0.88 | 0.65 |
Dependencies
textblob>=0.17.0
pandas>=2.0.0
matplotlib>=3.7.0
Limitations
- English language optimized (other languages may have reduced accuracy)
- Sarcasm and irony may not be detected accurately
- Context-dependent sentiment may be missed
- Short texts (<5 words) have lower confidence